

Welcome to moments’s documentation!

Getting started

	Introduction

	Installation

SFS

	The Site Frequency Spectrum

	SFS Inference

Linkage disequilibrium

	Multi-population LD statistics

	Parsing LD statistics

	Inferring demography with LD

Extensions

	Specifying models with demes

	Two-locus frequency spectrum

	Triallele frequency spectrum

Modules

	Demography and genetic diversity

	DFE inference

	Linkage disequilibrium and recombination

	Selection at two loci

Data types and functions

	API for site frequency spectra

	API for linkage disequilibrium

Introduction

Note

These docs are under development. In particular, many of the modules have not
yet been completed and some of the extensions are not documented in great
detail. If you find any issues, confusing bits, or have suggestions to make
them more complete or clearer, please open an issue or a PR. Thanks!

Welcome to moments! moments implements methods for inferring demographic
history and patterns of selection from genetic data, based on solutions to the
diffusion approximations to the site-frequency spectrum (SFS).
The SFS implementation and interface of moments is large based on the
∂a∂i [https://bitbucket.org/gutenkunstlab/dadi/] open
source package developed by Ryan Gutenkunst [http://gutengroup.mcb.arizona.edu].
We largely reuse ∂a∂i’s interface but introduced a new simulation engine. This
new method is based on the direct computation of the frequency spectrum without
solving the diffusion system. Consequently we circumvent the numerical PDE
approximations and we get rid of the frequency grids used in ∂a∂i.

moments.LD implements methods for computing linkage disequilibrium statistics
and running multi-population demographic inference using patterns of LD. This
extension contains methods for parsing phased or unphased sequencing data to
compute LD-decay for a large number of informative two-locus statistics, and
then uses those statistics to infer demographic history for large numbers of
populations.

moments was developed in
Simon Gravel’s group [http://simongravel.lab.mcgill.ca/Home.html] in the Human
Genetics department at McGill University, with maintenance and development by the
Gravel Lab and Aaron Ragsdale [http://apragsdale.github.io].

Citations

If you use moments in your research, please cite:

	Jouganous, J., Long, W., Ragsdale, A. P., & Gravel, S. (2017). Inferring the
joint demographic history of multiple populations: beyond the diffusion
approximation. Genetics, 206(3), 1549-1567.

If you use moments.LD in your research, please cite:

	Ragsdale, A. P. & Gravel, S. (2019). Models of archaic admixture and recent
history from two-locus statistics. PLoS Genetics, 15(6), e1008204.

	Ragsdale, A. P. & Gravel, S. (2020). Unbiased estimation of linkage
disequilibrium from unphased data. Mol Biol Evol, 37(3), 923-932.

If you use moments.TwoLocus in your research, please cite:

	Ragsdale, A. P. (2022). Local fitness and epistatic effects lead to distinct
patterns of linkage disequilibrium in protein-coding genes. Genetics,
221(4), iyac097.

Change log

1.1.15

	Fix various bugs in LD parsing methods, including when data is missing and
recursion errors in cythonized genotype calculation methods

	Add steady state solution to LD methods

1.1.14

	Fix bugs when computing multi-population LD statistics using phased haplotype
data

	Steady state LD statistics for two-population island models

1.1.13

	Function to parse ANGSD-formatted data as a moments.Spectrum object (issue #106)

	Catch if genotype matrix is too large to compute pairwise LD (issue #105)

1.1.12

	Efficiency improvements in LD Parsing and Integration

	Test demes graph slicing features

1.1.11

	The LD inference methods now allow calculation of f-statistics (f2, f3, f4)

	Demes methods allow multiple sources in pulses

	Demes integration allow for ancient samples

	Fix bugs in L-BFGS-B methods for inference using the SFS

1.1.10

	Add warnings and exceptions if bins are improperly defined in LD.Parsing (Issue #99).

	Remove ld_extensions flag from installation so that all extensions are built
automatically.

	Pin cython to ~0.29 until recursion error is fixed

	Allow samples to be specified with a dictionary for SFS calculation with Demes

	Memory-efficient caching of projection in TwoLocus

	Add LD inference using Demes and clean up uncertainty calculations for SFS inference
using demes

1.1.9

	Allow ancient samples in Demes inference function

	Add selection and dominance to Demes SFS integration function

	Add f2 and f4 statistics to LDstats object

	Allow multiple simultaneous merger events in Demes integration methods

	Add uncertainty functions to Demes SFS inference module

	Refactor Demes SFS inference options (#85)

	Add function to compute genotype matrix from the SFS

	Add function to compute allele frequency threshold LD statistics from
TwoLocus spectrum

	Fix factor of 2 discrepancy between LD and TwoLocus mutation model (#60)

1.1.8

	Fix bug that plotted multiple colorbars in plot_single_2d_sfs (issue #82).

	Add L-BFGS-B optimization method to LD inference.

	Fix bug in SFS inference using demes when a branch event time is a variable parameter.

	Fix bug in LD Godambe method that improperly normalized J matrix and cU vector.

1.1.7

	Inference using demes allows for ancestral misidentification estimation
(#81).

	Fst computation now has option for all pairwise computations (#80).

	Bug fix when computing LD with an input VCF that includes multiple
chromosomes (#78).

	Bug fix when computing LD means over multiple regions.

	Expanded documentation, particularly for clarification of installation steps
in docs when using LD parsing methods (#79), usage of Godambe methods for
computing confidence intervals (#77), and more details for LD methods.

1.1.6

	Many small bug fixes and API improvements to LD parsing, inference, and
confidence interval methods.

	Expanded documentation for computing, parsing, and running inference using LD
statistics (#73).

	Expand LD examples in repository and bring them up to date with current API
(#74).

	Minor improvements to 1D SFS plotting (#64).

1.1.5

	Use (chrom, pos) tuple as data dictionary key, to avoid conflicts with
underscores. Underscores in contig/chromosome names are again supported.

	Add branch function to Spectrum class.

	Fix bug when computing SFS from demes with branches occurring simultaneously
(#71).

	Fix bug when computing SFS from demes with pulses occurring simultaneously
(#72).

1.1.4

	Fix bugs in Plotting multi-population SFS comparisons that were showing each
subplot in a new figure instead of in a single plot.

	Hide the intrusive scale bar in ModelPlot by default.

1.1.3

	Fix bug in Misc.make_data_dict_vcf that skipped any site with missing data.

	Fix numpy deprecation warning when projecting.

	Documentation updates for miscellaneous functions.

	Fix bug where copying and pickling LDstats objects resulted in a recursion
error (#66).

1.1.2

	Fix bug when checking if matplotlib is installed for model plotting (issue
#68).

	Now compatible with demes >= 0.1.

1.1.1

	Fix a pesky RecursionError in moments.LD.Inference.sigmaD2.

	Fix bug when simulating LD using Demes if admixture timing coincides with
a deme’s end time.

	Fix numpy.float deprecation warning in moments.LD.Numerics.

	Update demes methods to work with demes version 0.1.0a4.

	Improve (or at least change) some of the plotting outputs.

	Protect import of demes if not installed.

1.1.0

	Completely rebuilt documentation, now hosted on [Read the
Docs](https://moments.readthedocs.io/).

	Tutorials and modules in the documentation for running inference, inferring
the DFE, and exploring LD under a range of selection models.

	More helpful documentation in docstrings.

	Support for
[demes](https://moments.readthedocs.io/en/latest/extensions/demes.html).

	Simpler functions to improve Spectrum manipulation and demographic events,
such as fs.split(), fs.admix, etc.

	API and numerics overhaul for Triallele and TwoLocus methods.

	Expanded selection models in the TwoLocus module.

	moments.LD methods are now zero-based.

	Reversible mutation model supports a single symmetric mutation rate.

1.0.9

	Numpy version bump from 0.19 to 0.20 creates incompatibility if cython
extension are built with different version than user environment. This more
explicitly specifies the numpy version to maintain compatibility (with thanks
to Graham Gower).

1.0.8

	Allow for variable migration rate by passing a function as the migration
matrix (with thanks to Ekaterina Noskova/@noscode).

	Fixes an issue with ModelPlot when splitting 3D and 4D SFS.

1.0.7

	Bug fixes and haplotype parsing in moments.LD.Parsing.
(Issues #38 through #42, with thanks to Nathaniel Pope).

1.0.6

	Updates to installation, so that pip installs dependencies automatically.

	Protect against importing matplotlib if not installed.

	Triallele and TwoLocus now ensure using CSC format sparse matrix to avoid
sparse efficiency warnings.

	Streamline test suite, which now works with pytest, as
python -m pytests tests.

1.0.5

	Fixes install issues using pip: pip install . or
pip install git+https://bitbucket.org/simongravel/moments.git is now functional.

1.0.4

	Stable importing of scipy.optimize nnls function.

	Fixes a plotting bug when ax was set to None (from @noscode - thanks!).

1.0.3

	Options in plotting scripts for showing and saving output.

	Add confidence interval computation for LD.

	Add parsing script for ANGSD frequency spectrum output.

Note that we started tracking changes between versions with version 1.0.2.

Installation

moments now supports Python 3. Because Python is soon discontinuing support for
Python 2, we do not actively ensure that moments remains fully compatable with Python
2, and strongly recommend using Python 3.

Using conda

moments is available via Bioconda [https://anaconda.org/bioconda/moments].

The most recent release of moments can be installed by running

conda install -c bioconda moments

The conda channels [https://bioconda.github.io/user/install.html#set-up-channels]
must be set up to include bioconda, which can be done by running

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

Using pip

A simple way to install moments is via pip. numpy, mpmath, and cython
are install requirements, but installing moments directly from the git repository
using pip should install these dependencies automatically:

pip install git+https://bitbucket.org/simongravel/moments.git

This approach can also be used to install the development branch of moments:

pip install git+https://bitbucket.org/simongravel/moments.git@devel

Alternatively, you can clone the git repository

git clone https://bitbucket.org/simongravel/moments.git

and then from within the moments directory (cd moments), run

pip install -r requirements.txt
pip install .

Dependencies and details

moments and moments.LD requires a number of dependencies. Minimally,
these include

	numpy

	scipy

	cython

	mpmath

	demes

All dependencies are listed in requirements.txt, and can be install together
using

pip install -r requirements.txt

We also strongly recommend installing ipython for interactive analyses.

If you are using conda, all dependencies can be installed by navigating to the
moments directory and then running

conda install --file requirements.txt

Once dependencies are installed, to install moments, run the following commands
in the moments directory:

python setup.py build_ext --inplace
python setup.py install

or

pip install .

Note that you might need sudo privileges to install in this way.

You should then be able to import moments in your python scripts. Entering an
ipython or python session, type import moments. If, for any reason, you have
trouble installing moments after following these steps, please submit an
Issue [https://bitbucket.org/simongravel/moments/issues].

If you use Parsing from moments.LD, which reads VCF-formatted files and
computes LD statistics to compare to predictions from moments.LD, you will need to
additionally install

	hdf5

	scikit-allel

The Site Frequency Spectrum

This page describes the Site Frequency Spectrum (SFS), how to compute
its expectation using moments, manipulate spectra, implement demographic
models using the moments API, and computing and saving spectra from
a VCF.

If you use the SFS methods in moments in your research, please cite

	[Jouganous2017] Jouganous, J., Long, W., Ragsdale, A. P., & Gravel, S. (2017).
Inferring the joint demographic history of multiple populations:
beyond the diffusion approximation. Genetics, 206(3), 1549-1567.

The SFS

A site-frequency spectrum is a \(p\)-dimensional histogram, where \(p\)
is the number of populations for which we have data. Thus, the shape of the SFS
is \((n_0+1) \times (n_1+1) \times \ldots (n_{p-1}+1)\), where \(n_i\)
is the haploid sample size in population \(i\). An entry of the SFS
(call it fs) stores the number, density, or probability for SNP frequencies
given by the index of that entry. That is, fs[j, k, l] is the number
(or density) of mutations with allele frequencies j in population 0, k
in population 1, and l in population 2. (Note that all indexing, as is
typical in Python, is zero-based.)

Examples

It can be helpful to visualize site-frequency spectra if you are new to working
with them. In the single-population case, a SFS is a one-dimensional array. For
variable biallelic loci and steady-state demography (no historical size changes,
migrants, etc), the SFS is proportional to \(1/i\), with total size depending
on the mutation rate and sequence length. Historical size changes and demographic
events perturb the SFS from this shape, as does negative or positive selection,
skewing the SFS to lower or higher frequencies, resp.

import moments
import numpy as np
import matplotlib.pylab as plt

sample_size = 40

A neutral SFS
fs_neu = moments.Demographics1D.snm([sample_size])
SFS under negative selection
fs_neg = moments.Spectrum(
 moments.LinearSystem_1D.steady_state_1D(sample_size, gamma=-10)
)
SFS under positive selection
fs_pos = moments.Spectrum(
 moments.LinearSystem_1D.steady_state_1D(sample_size, gamma=10)
)

fig, ax = plt.subplots(1, 1, figsize=(8, 4))
ax.plot(fs_neu, ".-", ms=8, lw=1, label="Neutral")
ax.plot(fs_neg, "x-", ms=8, lw=1, label="Neg. selection")
ax.plot(fs_pos, "+-", ms=8, lw=1, label="Pos. selection")
ax.set_xlabel("Allele frequency")
ax.set_ylabel("Density")
ax.legend();

[image: ../_images/sfs_1_0.png]

Multi-population SFS can be illustrated as multi-dimensional histograms, such
as 2D heat maps. Here, we consider a very simple model of a population split
and both derived populations are the same size as the ancestral population and
do not exchange migrants. Allele frequencies in populations that split more
recently will still be quite similar, while more distantly related populations
are expected to have larger allele frequency differences.

sample_sizes = [50, 50]

parameters of `split_mig` are (nu0, nu1, T, m)
T is measured in units of 2Ne generations
fs_recent = moments.Demographics2D.split_mig((1, 1, 0.02, 0), sample_sizes)
fs_older = moments.Demographics2D.split_mig((1, 1, 0.15, 0), sample_sizes)

assume theta = 20000, and then resample to fake data
fs_recent = (20000 * fs_recent).sample()
fs_older = (20000 * fs_older).sample()

moments.Plotting.plot_single_2d_sfs(fs_recent)
moments.Plotting.plot_single_2d_sfs(fs_older)

[image: ../_images/sfs_2_0.png]
[image: ../_images/sfs_2_1.png]

Spectrum objects in moments

SFS are stored as moments.Spectrum objects. If you are familiar with
dadi [https://bitbucket.org/ryangutenkunst/dadi.git]’s Spectrum objects,
then you already will know your way around a moments.Spectrum object.
moments has built off the dadi SFS construction, manipulation,
and demographic specification, with minor adjustments that reflect the
differences between the simulation engines and parameterizations.

Spectrum objects are a subclass of numpy.masked_array, so that standard
array manipulation is possible. Indexing also works the same way as a typical
array, so that fs[2, 3, 5] will return the entry in the SFS corresponding
to allele frequencies \((2, 3, 5)\) (here, in a three-population SFS).
Similarly, we can check if the SFS is masked at a given entry. For example,
fs.mask[0, 0] returns whether the “fixed” bin (where no samples carry
the derived allele) is ignored.

A Spectrum object has a few additional useful attributes:

	fs.pop_ids: A list of population IDs (as strings) for each population
in the SFS.

	fs.sample_sizes: A list of sample sizes (as integers) corresponding to
the shape of the SFS.

	fs.folded: If True, the SFS is folded, meaning we polarize
allele frequencies by the minor allele frequency. If False, the SFS is
polarized by the derived allele.

Manipulating SFS

Along with standard array manipulations, there are operations specific to SFS.
Some of these are equivalent to standard array operations, but we ensure that
the masking and population IDs are updated properly.

Folding

Folding a SFS removes information about how SNPs are polarized, so that the
Spectrum stores counts of mutations with a given minor allele frequency. To
fold a SFS, we call fold(), which returns a folded Spectrum object.

For example, the standard neutral model of sample size 10,

fs = moments.Demographics1D.snm([10])
fs

Spectrum([-- 1.0 0.4999999999999999 0.33333333333333326 0.25 0.2
 0.16666666666666666 0.14285714285714285 0.125 0.1111111111111111 --], folded=False, pop_ids=None)

can be folded to the minor allele frequency, which updates the allele counts
in the minor allele frequency bins and the mask:

fs_folded = fs.fold()
fs_folded

Spectrum([-- 1.1111111111111112 0.6249999999999999 0.4761904761904761
 0.41666666666666663 0.2 -- -- -- -- --], folded=True, pop_ids=None)

When folding multi-dimensional SFS, note that the folding occurs over the global
minor allele frequency.

Projecting

SFS projection takes a Spectrum of some sample size and reduces the sample size
in one or more populations. The output Spectrum sums over all possible
down-samplings so that it is equivalent to having sampled a smaller sample size
to begin with.

fs_proj = fs.project([6])
fs_proj

Spectrum([-- 0.9999999999999996 0.49999999999999994 0.33333333333333354
 0.24999999999999994 0.19999999999999996 --], folded=False, pop_ids=None)

For multi-dimensional frequency spectra, we must pass a list of sample sizes
of equal length to the dimension of the SFS:

fs = moments.Spectrum(np.random.rand(121).reshape((11, 11)))
fs_proj = fs.project([6, 4])
fs_proj

Spectrum([[-- 1.666699163311176 1.773848723929079 2.213818377017373
 2.1833818246190777]
 [1.5525536563259945 1.7654224402265684 1.8916157102228706
 2.108341325916448 1.6411771176757677]
 [1.2380175317868107 1.5563647838190477 1.8183717652872526
 1.8050326642525654 1.2934290586750128]
 [1.328463954576607 1.5467554095910203 1.8491112309952975
 1.8560700454960288 1.7067352726551386]
 [1.203051878037783 1.5970785387440214 1.871261935237114
 1.9495678956007791 2.0570000719340475]
 [1.5255746724254706 1.5974617101300215 1.7873311391428224
 1.9697018515569817 1.8542814658401647]
 [1.865067987053594 1.8577351929691213 1.7254753623366899
 1.7242276035738935 --]], folded=False, pop_ids=None)

Marginalizing

If a population goes extinct, or if we want to subset a SFS to some focal
populations, we use the marginalize() function. This function takes
a list of population indexes as input, and removes those indexes from the
output SFS. The array operation is simply a sum over those axes, but the
marginalization function also preserves population IDs if given.

For example, given a three-population spectrum

fs = moments.Spectrum(np.ones((5, 5, 5)), pop_ids=["A", "B", "C"])
fs

Spectrum([[[-- 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]]

 [[1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]]

 [[1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]]

 [[1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]]

 [[1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 1.0]
 [1.0 1.0 1.0 1.0 --]]], folded=False, pop_ids=['A', 'B', 'C'])

we can view the one-population SFS, here the first population:

fs_marg = fs.marginalize([1, 2])
fs_marg

Spectrum([-- 25.0 25.0 25.0 --], folded=False, pop_ids=['A'])

or the joint two-population SFS for population indexes 1 and 2:

fs_marg = fs.marginalize([0])
fs_marg

Spectrum([[-- 5.0 5.0 5.0 5.0]
 [5.0 5.0 5.0 5.0 5.0]
 [5.0 5.0 5.0 5.0 5.0]
 [5.0 5.0 5.0 5.0 5.0]
 [5.0 5.0 5.0 5.0 --]], folded=False, pop_ids=['B', 'C'])

Note that the population IDs stay consistent after marginalizing.

Resampling

We can resample a new SFS from a given Spectrum using two approaches. First,
a standard assumption is that entries in an “expected” SFS give the expectation
of counts within each bin, and data follows a Poisson distribution with rates
equal to the bin values. Then sample() creates a Poisson-sampled SFS:

fs = moments.Demographics1D.snm([10]) * 1000
fs_pois = fs.sample()
fs_pois

Spectrum([-- 1002 508 314 226 189 182 142 124 125 --], folded=False, pop_ids=None)

Alternatively, we could resample and enforce that we obtain a SFS with the
same number of segregating sites:

fs_fixed = fs.fixed_size_sample(np.rint(fs.S()))
print(f"number of sites in input:", f"{fs.S():.2f}")
print(f"number of sites in resampled SFS:", fs_fixed.S())
fs_fixed

number of sites in input: 2828.97
number of sites in resampled SFS: 2829

Spectrum([-- 1043 484 291 241 227 164 137 132 110 --], folded=False, pop_ids=None)

Demographic events

When defining demographic models with multiple populations, we need to apply
demographic events such as population splits, mergers, and admixtures. These
operations often change the dimension or size of the SFS, so they do not
act in-place. Instead, they return a new Spectrum object, similar to the
manipulations in the previous section.

Population splits and branches

New in moments version 1.1, the Spectrum class includes functions to
directly apply demographic events. A population split is called using
fs.split(idx, n0, n1), where the population indexed by idx splits
into n0 and n1 lineages. The split function also takes a
new_ids keyword argument, where we can specify the population IDs of
the two new populations after the split. Note that n0 and n1 cannot
sum to larger than the current sample size of the population that we are
splitting.

For example, to split a single population with 6 tracked lineages into
two populations with 3 lineages in each population:

fs = moments.Demographics1D.snm([6])
fs_split = fs.split(0, 3, 3)
fs_split

Spectrum([[-- 0.4999999999999997 0.09999999999999999 0.016666666666666653]
 [0.4999999999999997 0.29999999999999993 0.14999999999999986
 0.049999999999999996]
 [0.09999999999999999 0.14999999999999986 0.14999999999999997
 0.09999999999999995]
 [0.016666666666666653 0.049999999999999996 0.09999999999999995 --]], folded=False, pop_ids=None)

If we use new_ids, we can also keep track of population ids after
a split event:

fs = moments.Demographics2D.snm([6, 2], pop_ids=["A", "B"])
fs

Spectrum([[-- 0.24999999999999994 0.017857142857142853]
 [0.7500000000000001 0.21428571428571433 0.03571428571428571]
 [0.2678571428571428 0.17857142857142852 0.053571428571428506]
 [0.11904761904761908 0.1428571428571428 0.07142857142857138]
 [0.053571428571428506 0.10714285714285701 0.08928571428571426]
 [0.021428571428571408 0.07142857142857144 0.10714285714285715]
 [0.00595238095238095 0.035714285714285705 --]], folded=False, pop_ids=['A', 'B'])

fs_split = fs.split(0, 4, 2, new_ids=["C", "D"])
fs_split

Spectrum([[[-- 0.24999999999999994 0.017857142857142853]
 [0.24999999999999994 0.07142857142857141 0.0119047619047619]
 [0.017857142857142853 0.011904761904761899 0.003571428571428567]]

 [[0.49999999999999994 0.14285714285714285 0.0238095238095238]
 [0.14285714285714285 0.09523809523809523 0.02857142857142854]
 [0.0238095238095238 0.028571428571428543 0.014285714285714268]]

 [[0.10714285714285711 0.0714285714285714 0.0214285714285714]
 [0.0714285714285714 0.0857142857142856 0.0428571428571428]
 [0.0214285714285714 0.042857142857142795 0.0357142857142857]]

 [[0.0238095238095238 0.028571428571428543 0.01428571428571427]
 [0.02857142857142854 0.057142857142857086 0.047619047619047616]
 [0.014285714285714268 0.047619047619047616 0.07142857142857142]]

 [[0.003571428571428567 0.007142857142857133 0.00595238095238095]
 [0.007142857142857134 0.023809523809523805 0.035714285714285705]
 [0.00595238095238095 0.035714285714285705 --]]], folded=False, pop_ids=['C', 'B', 'D'])

As of version 1.1.5, we can apply a “branch” event. This is conceptually similar
to a split, but simpler in that a child population branches off from a parental
population. In this case, we just need to give the sample size of the new child
population (and it’s new population ID), and the parental population is left
with the same number of lineages minus the size of the new population, and its
population ID (if given) remains unchanged.

fs = moments.Demographics1D.snm([5], pop_ids=["A"])
fs_branch = fs.branch(0, 2, new_id="B")
fs_branch

Spectrum([[-- 0.40000000000000013 0.05000000000000001]
 [0.6000000000000001 0.30000000000000004 0.1]
 [0.15000000000000002 0.2 0.15000000000000002]
 [0.03333333333333334 0.10000000000000003 --]], folded=False, pop_ids=['A', 'B'])

Note

Previous versions of moments required calling functions such as
moments.Manips.split_1D_to_2D(fs, n0, n1) or
moments.Manips.split_3D_to_4D_2(fs, n0, n1).
The new API (fs.split(idx, n0, n1)) wraps the different split functions
in moments.Manips so that we don’t need to worry about picking the
correct split function.

Admixture and mergers

Here, we consider two types of admixture events. First, two populations mix
with given proportions to form a new population (which we will call an
“admix” event). And second, one population contributes some proportion to
another population in the SFS (which we call a “pulse migration” event).
In both cases, lineages within the SFS are moved from one or more populations
to another, and its size and possibly dimension can change.

To mix two population with a given proportion, we use
fs.admix(idx0, idx1, num_lineages, proportion), where proportion is the
proportion of the new population that comes from population idx0, and 1-proportion
comes from population indexed by idx1. The number of lineages is the sample
size in the new admixed population, and the sample sizes in the source populations
necessarily decrease by that same amount. Note that if the sample size of a source
population equals the number of lineages that are moved, that source population
no longer exists and the dimension decreases by one.

For example, in a two-population SFS, we can look at a few different scenarios of
admixture and sample sizes:

fs = moments.Spectrum(np.ones((11, 11)))
print("original SFS has sample size", fs.sample_sizes)
fs_admix = fs.admix(0, 1, 10, 0.25)
print("admix SFS has size", fs_admix.sample_sizes, "after moving 10 lineages")
fs_admix2 = fs.admix(0, 1, 5, 0.5)
print("second admix SFS has size", fs_admix2.sample_sizes, "after moving 5 lineages")

original SFS has sample size [10 10]
admix SFS has size [10] after moving 10 lineages
second admix SFS has size [5 5 5] after moving 5 lineages

And to account for population IDs after admixture:

fs = moments.Spectrum(np.ones((9, 7)), pop_ids=["A", "B"])
print("original SFS has size", fs.sample_sizes, "and pop ids", fs.pop_ids)
fs_admix = fs.admix(0, 1, 4, 0.25, new_id="C")
print("admix SFS has size", fs_admix.sample_sizes, "and pop ids", fs_admix.pop_ids,
 "after moving 4 lineages into new population C")

original SFS has size [8 6] and pop ids ['A', 'B']
admix SFS has size [4 2 4] and pop ids ['A', 'B', 'C'] after moving 4 lineages into new population C

Integration

moments integrates the SFS forward in time by calling fs.integrate(). At a
minimum, we need to pass the population size(s) nu and the integration time
T. All parameters are scaled by a reference effective population size, so that
time is measured in units of \(2N_e\) generations, sizes are relative to this
same \(N_e\), and mutation and migration rates and the selection coefficient is
scaled by \(2N_e\).

Size functions

The integrate() function can take either a list of relative sizes, equal to the
number of populations represented by the SFS, or it can take a function that returns
a list of population sizes over time.

For example, to integrate a two-population SFS with the first population having relative
size 2.0 (double the reference size), and the second having size 0.1 (one-tenth the
relative size) for 0.05 time units:

fs = moments.Demographics2D.snm([10, 10])
fs.integrate([2.0, 0.1], 0.05)

To specify a size function that changes over time, for example an exponential growth
model, we can instead pass a size function to the integration method:

fs = moments.Demographics1D.snm([10])
nu0 = 0.5
nuF = 2.0
T = 0.2
nu_func = lambda t: [nu0 * np.exp(np.log(nuF / nu0) * t / T)]
print("size at start of epoch:", nu_func(0))
print("size at end of epoch:", nu_func(T))
fs.integrate(nu_func, T)

size at start of epoch: [0.5]
size at end of epoch: [1.9999999999999996]

Integration time and time units

Unlike coalescent simulators, such as msprime, integration times in moments
are in units of \(2N_e\) generations. Thus, typical integration times for many
demographic scenarios could be much smaller than one.

Times are not cummulative when integrating multiple epochs - each time integrate()
is called, internally time starts from zero by default. Thus, when defining multiple
epochs with size functions, keep in mind that time for that epoch runs from zero to the
integration time T.

Migration rates

Migration between populations is specified by the migration matrix, with has shape
\(p \\times p\), where \(p\) is the number of populations represented by the
SFS. The \(i\)-th row of the migration matrix gives the migration rates from
each other population into the population indexed by \(i\). Because rates are
rescaled by the effective population size, the entry M[i, j] gives the migration
rate 2*Ne*m_ij, where m_ij is the per-generation probability of a lineage
in population i having its parent in population j. Note that the diagonal
elements of M are ignored.

For example, to integrate a two-population SFS with migration:

fs = moments.Demographics2D.snm([10, 10])
M = np.array([
 [0, 2.0],
 [0.75, 0]
])
fs.integrate([2, 3], 0.05, m=M)

Mutation rates and mutation model

By default, moments uses an infinite-sites model (ISM). Then the mutation rate
\(\theta\) is the population-size scaled mutation rate multiplied by the number
of loci: theta = 4*Ne*u*L. By default, theta is set to 1.

Luckily, we do not often need to worry about setting theta, because the ISM
guarantees that the expected count in each frequency bin of the SFS scales linearly
in the mutation rate. This means that we can happily integrate with the default
theta and only rescale the SFS at the end:

theta = 100
fs_theta = moments.LinearSystem_1D.steady_state_1D(20) * 100
fs_theta = moments.Spectrum(fs_theta)
fs_theta.integrate([2.0], 0.1, theta=theta)

fs = moments.Demographics1D.two_epoch((2.0, 0.1), [20]) # default theta = 1
fs = theta * fs

print(fs_theta.S())
print(fs.S())

395.6948077081298

395.69480770813

Reversible mutations

Unlike dadi, which solves the diffusion equation directly and can only
simulate under the ISM, the moments-based engine in moments lets us
accurately track the density of the “fixed” bins. That is, we can compute
not just the distribution of segregating mutation frequencies, but also the
probability that a locus is monomorphic in a sample for the derived or
ancestral allele.

To compute a SFS in which we track monomorphic loci, we use a reversible mutation
model, which we specify by setting finite_genome=True. When simulating under
the finite genome model, the mutation rate is no longer scaled by the number of
loci, L. Instead, the mutation rates are simply theta_fd=4*Ne*u and
theta_bd=4*Ne*v where u and v are the forward and backward mutation rates,
respectively. Therefore, theta_fd and theta_bd are typically much less than
1 (and in fact the model breaks down for scaled mutation rates around 1).

To simulate under the reversible mutation model, we first initialize the
steady-state SFS with mask_corners=False, and then apply demographic events
as normal and integrate using finite_genome=True:

theta_fd = 0.0005 # 4*Ne*u, with Ne = 1e4 and u = 1.25e-8
theta_bd = 0.001 # the backward mutation rate is double the forward rate
fs = moments.LinearSystem_1D.steady_state_1D_reversible(
 20, theta_fd=theta_fd, theta_bd=theta_bd) # sample size = 20
fs = moments.Spectrum(fs, mask_corners=False)

fs.integrate(
 [5.0], 0.2, finite_genome=True, theta_fd=theta_fd, theta_bd=theta_bd)

Note that if the forward and backward mutation rates are equal, we can use theta
to set both mutation rates (which must be set, as theta must be less than 1).

Illustration: ancestral state misidentification

In SFS analyses, a typical confounder is the misidentification of the ancestral
allele. This occurs because polarization requires estimating the ancestral state
of a locus, which is typically done by comparing to one or more outgroup species
in a sequence alignment. For humans, we typically use chimpanzee and other great
apes to infer the ancstral allele.

At longer evolutionary timescales, it is not uncommon for multiple independent
mutations to occur at the same locus, so that when comparing to an outgroup species
we classify some derived mutations as ancestral and some ancestral mutations as
derived. For humans, the rate of ancestral misidentification is typically in the
1-3% range, depending on the method used to polarize alleles.

For example, we can simulate using rough parameters (\(u=1.25\times 10^{-8}\),
\(N_e=10^4\), divergence of 6 million years, and a generation time of 25 years)
and symmetric mutation rates to see
the effect of polarizing based on the allele in a chimp sequence. Here, if the
chimp carries the derived allele, we will instead assume the ancestral allele
is derived:

Ne = 1e4
u = 1.25e-8
theta = 4 * Ne * u
generation_time = 25
divergence_years = 6e6
T = divergence_years / generation_time / 2 / Ne

fs = moments.LinearSystem_1D.steady_state_1D_reversible(
 101, theta_fd=theta, theta_bd=theta)
fs = moments.Spectrum(fs, mask_corners=False)

fs = fs.split(0, 100, 1)
fs.integrate([1, 1], T, finite_genome=True, theta=theta)

fs_polarized = fs[:,0] + fs[::-1,1]
fs_polarized.mask_corners()

Then visualizing using moments.Plotting.plot_1d_fs(fs_polarized), we can see
the uptick at high-frequency variants due to ancestral misidentification - that is,
recurrent mutations along the lineage leading from humans to chimps:

[image: ../_images/ancestral_misid.png]

Fig. 1 Excess of high-frequency derived mutations due to
ancestral misspecification.

Selection and dominance

One of the great benefits to forward simulators is their ability to include the
effects of selection and dominance with little extra cost. In the selection
model implemented in moments, genotype fitnesses are given relative to the
ancestral homozygous genotype (i.e. relative fitness of aa is 1), so that
heterozygous genotypes (Aa) have relative fitness \(1+2hs\) and
homozygous derived genotypes (AA) have relative fitness \(1+2s\).

When \(h=1/2\), selection is additive (or genic), which corresponds to
haploid copies of the derived allele having average fitness \(1+s\). If
h is unspecified, the selection model defaults to additivity
(\(h=1/2\)), and if gamma is unspecified, we default to neutrality.

Note

We assume \(|s| \ll 1\), so that \(s^2\) and higher order terms can
be ignored. For strong selection in a moments framework, see recent
advances from [Krukov2021].

moments takes scaled selection coefficients \(\gamma = 2 N_e s\) and
dominance coefficients \(h\) as keyword parameters when initializing the
SFS and integrating. The reference \(N_e\) is often taken as the ancestral
effective population size.

gamma = -5
h = 0.1
ns = 30

fs = moments.LinearSystem_1D.steady_state_1D(ns, gamma=gamma, h=h)
fs = moments.Spectrum(fs)
print("Tajima's D (before expansion):", fs.Tajima_D())

fs.integrate([3], 0.2, gamma=gamma, h=h)
print("Tajima's D (after expansion):", fs.Tajima_D())

Tajima's D (before expansion): -0.643870774090141

Tajima's D (after expansion): -1.1502872304492777

Simulating selection with multiple populations works similarly. We can specify
gamma and h as scalar values, which implies that the allele has the
same selection and dominance effect in each population. We can instead simulate
population-specific selection and dominance coefficients by setting gamma
and/or h as a list of length equal to the number of populations in the
spectrum, with indexing matching the ordering of the populations in the
spectrum object.

Ancient samples and frozen populations

So far, in all the examples we’ve seen the output SFS integrates all populations
until the same end time. If one or more of the sampled populations are
non-contemporary, we need to “freeze” those populations at their time of sampling.
This is done by specifying which populations to freeze using the frozen
argument.

For example, if we sample two populations that split 100kya, and one
population consisting of ancient samples from 20kya, we integrate the first
80 thousand years as normal, and then the last 20 thousand years with the ancient
population frozen:

Ne = 1e4
generation_time = 25
T1 = 80e3 / 2 / Ne / generation_time
T2 = 20e3 / 2 / Ne / generation_time
migrate = 0.5

fs = moments.Demographics2D.snm([10, 10])
fs.integrate([1, 1], T1, m=[[0, migrate], [migrate, 0]])
fs.integrate([1, 1], T1, m=[[0, migrate], [migrate, 0]], frozen=[False, True])

Computing summary statistics

moments allows us to compute a handful of summary statistics from the SFS.
For single populations, we can get Watterson’s \(\theta\), the diversity
\(\pi\), or Tajima’s \(D\) directly from the SFS:

fs = moments.Demographics1D.two_epoch((3.0, 0.2), [20])
print("Watterson's theta:", fs.Watterson_theta())
print("Diversity:", fs.pi())
snm = moments.Demographics1D.snm([20])
print("Tajima's D at steady state:", snm.Tajima_D())
print("Tajima's D after expansion:", fs.Tajima_D())

Watterson's theta: 1.291270898392208
Diversity: 1.128986048415916
Tajima's D at steady state: 3.1116722926989843e-16
Tajima's D after expansion: -0.37656997453348207

For multi-population spectra, we can also compute FST using Weir and Cokerham’s
(1984) method, which generalizes to any number of populations greater than one:

fs = moments.Demographics2D.snm([10, 10])
print("FST immediately after split:", fs.Fst())
fs.integrate([1, 1], 0.05)
print("FST after isolation of 0.05*2*Ne gens:", fs.Fst())
fs.integrate([1, 1], 0.05)
print("FST after isolation of 0.1*2*Ne gens:", fs.Fst())

FST immediately after split: 0.05263157894736842
FST after isolation of 0.05*2*Ne gens: 0.09774436090225562

FST after isolation of 0.1*2*Ne gens: 0.13875598086124397

Note that FST is sensitive to sample sizes: smaller sample sizes artificially
inflate the “true” divergence.

print("10 samples each:", moments.Demographics2D.snm([10, 10]).Fst())
print("100 samples each:", moments.Demographics2D.snm([100, 100]).Fst())

10 samples each: 0.05263157894736842

100 samples each: 0.005025125628140709

Compute SFS from VCF

moments supports computing a SFS from files in VCF format, given a
population information file. This takes two steps. We first parse the VCF
using and we then pass that data dictionary to the Spectrum class:

data_dict = moments.Misc.make_data_dict_vcf(vcf_filename, popinfo_filename)
fs = moments.Spectrum.from_data_dict(data_dict)

Plotting the SFS

moments comes pre-installed with a number of plotting functions, which can be
called from moments.Plotting. These include functions to plot individual
SFS, or to compare two SFS (for example, to compare a model to data). These
functions can be used out-of-the-box, or serve as inspiration for your own
matplotlib adventures. To see what plotting functions are available and view
their documentation, head to the moments API.

References

[Jouganous2017]
Jouganous, Julien, et al. “Inferring the joint demographic history of multiple populations: beyond the diffusion approximation.” Genetics 206.3 (2017): 1549-1567.

[Krukov2021]
Krukov, Ivan, and Simon Gravel. “Taming strong selection with large sample sizes.”
bioRxiv (2021), doi: 10.1101/2021.03.30.437711.

SFS Inference

Computing likelihoods

Following [Sawyer1992] the distribution of mutation frequencies is treated as
a Poisson random field, so that composite likelihoods (in which we assume
mutations are independent) are computed by taking Poisson likelihoods over bins
in the SFS. We typically work with log-likelihoods, so that the log-likelihood
of the data (\(D\)) given the model (\(M\)) is

\[\log{\mathcal{L}} = \sum_{i} D_i \log{M_i} - M_i - \log{D_i !}\]

where \(i\) indexes the bins of the SFS.

Likelihoods can be computed from moments.Inference:

import moments
import numpy as np

theta = 1000
model = theta * moments.Demographics1D.snm([10])

data = model.sample()

print(model)
print(data)

[-- 1000.0 499.9999999999999 333.33333333333326 250.0 200.0
 166.66666666666666 142.85714285714286 125.0 111.1111111111111 --]
[-- 1019 549 313 256 202 171 154 128 107 --]

print(moments.Inference.ll(model, data))

-36.85545379862947

When simulating under some demographic model, we usually use the default theta
of 1, because the SFS scales linearly in the mutation rate. When comparing to data
in this case, we need to rescale the model SFS. It turns out that the
maximum-likelihood rescaling is that which makes the total number of segregating
sites in the model equal to the total number in the data:

data = moments.Spectrum([0, 3900, 1500, 1200, 750, 720, 600, 400, 0])
model = moments.Demographics1D.two_epoch((2.0, 0.1), [8])

print("Number of segregating sites in data:", data.S())
print("Number of segregating sites in model:", model.S())
print("Ratio of segregating sites:", data.S() / model.S())

opt_theta = moments.Inference.optimal_sfs_scaling(model, data)
print("Optimal theta:", opt_theta)

Number of segregating sites in data: 9070.0
Number of segregating sites in model: 2.7771726368386327
Ratio of segregating sites: 3265.911481226729
Optimal theta: 3265.911481226729

Then we can compute the log-likelihood of the rescaled model with the data, which
will give us the same answer as moments.Inference.ll_multinom using the unscaled
data:

print(moments.Inference.ll(opt_theta * model, data))
print(moments.Inference.ll_multinom(model, data))

-59.880644681554486
-59.880644681554486

Optimization

moments optimization is effectively a wrapper for scipy optimization
routines, with some features specific to working with SFS data. In short, given
a demographic model defined by a set of parameters, we try to find those parameters
that minimize the negative log-likelihood of the data given the model. There are
a number of optimization functions available in moments.Inference:

	optimize and optimize_log: Uses the BFGS algorithm.

	optimize_lbfgsb and optimize_log_lbfgsb: Uses the L-BFGS-B algorithm.

	optimize_log_fmin: Uses the downhill simplex algorithm on the log of
the parameters.

	optimize_powell and optimize_log_powell: Uses the modified Powell’s
method, which optimizes slices of parameter space sequentially.

More information about optimization algorithms can be found in the
scipy documentation [https://docs.scipy.org/doc/scipy/reference/optimize.html].

With each method, we require at least three inputs: 1) the initial guess, 2) the
data SFS, and 3) the model function that returns a SFS of the same size as the data.

Additionally, it is common to set the following:

	lower_bound and upper_bound: Constraints on the lower and upper
bounds during optimization. These are given as lists of the same length of
the parameters.

	fixed_params: A list of the same length of the parameters, with fixed
values given matching the order of the input parameters. None is used to
specify parameters that are still to be optimized.

	verbose: If an integer greater than 0, prints updates of the optimization
procedure at intervals given by that spacing.

For a full description of the various inference functions, please see the
SFS inference API.

Single population example

As a toy example, we’ll generate some fake data from a demographic model
and then reinfer the input parameters of that demographic model. The
model is an instantaneous bottleneck followed by exponential growth,
implemented in moments.Demographics1D.bottlegrowth, which takes
parameters [nuB, nuF, T] and the sample size. Here nuB is the
bottleneck size (relative to the ancestral size), nuF is the relative
final size, and T is the time in the past the bottleneck occurred
(in units of \(2N_e\) generations).

nuB = 0.2
nuF = 3.0
T = 0.4

n = 60 # the haploid sample size

fs = moments.Demographics1D.bottlegrowth([nuB, nuF, T], [n])

theta = 2000 # the scaled mutation rate (4*Ne*u*L)
fs = theta * fs
data = fs.sample()

The input demographic model (assuming an \(N_e\) of 10,000), plotted using
demesdraw [https://github.com/grahamgower/demesdraw]:

[image: ../_images/inference_6_0.png]

We then set up the optimization inputs, including the initial parameter
guesses, lower bounds, and upper bounds, and then run optimization. Here,
I’ve decided to use the log-L-BFGS-B method, though there are a number of
built in options (see previous section).

p0 = [0.2, 3.0, 0.4]
lower_bound = [0, 0, 0]
upper_bound = [None, None, None]
p_guess = moments.Misc.perturb_params(p0, fold=1,
 lower_bound=lower_bound, upper_bound=upper_bound)

model_func = moments.Demographics1D.bottlegrowth

opt_params = moments.Inference.optimize_log_lbfgsb(
 p0, data, model_func,
 lower_bound=lower_bound,
 upper_bound=upper_bound)

model = model_func(opt_params, data.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, data)
model = model * opt_theta

The reinferred parameters:

Params	nuB	nuF	T	theta
Input	0.2	3.0	0.4	2000
Refit	0.2047	3.302	0.3544	1.937e+03

We can also visualize the fit of the model to the data:

moments.Plotting.plot_1d_comp_Poisson(model, data)

[image: ../_images/inference_9_0.png]

Confidence intervals

We’re often interested in estimating the precision of the inferred parameters
from our best fit model. To do this, we can compute a confidence interval for
each free parameter from the model fit. Methods implemented in moments to
compute, particularly the method based on the Godambe Information Matrix
[Coffman2016], were first implemented in dadi by Alec Coffman, who’s paper
should be cited if these methods are used.

See the API documentation for uncertainty functions for
information on their usage.

Two population example

Here, we will create some fake data for a two-population split-migration model,
and then re-infer the input parameters to the model used to create that data.
This example uses the optimize_log_fmin optimization function. We’ll also
use the FIM_uncert function to compute uncertainties (reported as standard
errors).

input_theta = 10000
params = [2.0, 3.0, 0.2, 2.0]
model_func = moments.Demographics2D.split_mig
model = model_func(params, [20, 20])
model = input_theta * model
data = model.sample()

p_guess = [2, 2, .1, 4]
lower_bound = [1e-3, 1e-3, 1e-3, 1e-3]
upper_bound = [10, 10, 1, 10]

p_guess = moments.Misc.perturb_params(
 p_guess, lower_bound=lower_bound, upper_bound=upper_bound)

opt_params = moments.Inference.optimize_log_fmin(
 p_guess, data, model_func,
 lower_bound=lower_bound, upper_bound=upper_bound,
 verbose=20) # report every 20 iterations

refit_theta = moments.Inference.optimal_sfs_scaling(
 model_func(opt_params, data.sample_sizes), data)

uncerts = moments.Godambe.FIM_uncert(
 model_func, opt_params, data)

print_params = params + [input_theta]
print_opt = np.concatenate((opt_params, [refit_theta]))

print("Params\tnu1\tnu2\tT_div\tm_sym\ttheta")
print(f"Input\t" + "\t".join([str(p) for p in print_params]))
print(f"Refit\t" + "\t".join([f"{p:.4}" for p in print_opt]))
print(f"Std-err\t" + "\t".join([f"{u:.3}" for u in uncerts]))

moments.Plotting.plot_2d_comp_multinom(
 model_func(opt_params, data.sample_sizes), data)

60 , -2311.62 , array([3.12304 , 4.02058 , 0.15159 , 2.69351])

80 , -1567.93 , array([2.32426 , 4.44649 , 0.214693 , 2.22463])

100 , -1247.24 , array([1.85654 , 2.80204 , 0.212053 , 2.36238])

120 , -1232.07 , array([2.01221 , 2.90966 , 0.202206 , 1.94089])

140 , -1229.4 , array([2.047 , 2.9772 , 0.201354 , 1.97114])

160 , -1229.21 , array([2.03852 , 2.99292 , 0.20257 , 1.96887])

180 , -1229.21 , array([2.04013 , 2.99887 , 0.202532 , 1.9637])

200 , -1229.21 , array([2.03931 , 2.9989 , 0.202537 , 1.9648])

Params	nu1	nu2	T_div	m_sym	theta
Input	2.0	3.0	0.2	2.0	10000
Refit	2.04	2.999	0.2025	1.965	9.989e+03
Std-err	0.0398	0.0661	0.00441	0.0698	69.8

[image: ../_images/inference_10_9.png]

Above, we can see that we recovered the parameters used to simulate the data
very closely, and we used moments’s plotting features to visually compare
the data to the model fit.

References

[Sawyer1992]
Sawyer, Stanley A., and Daniel L. Hartl. “Population genetics of polymorphism and divergence.” Genetics 132.4 (1992): 1161-1176.

[Coffman2016]
Coffman, Alec J., et al. “Computationally efficient composite likelihood statistics for demographic inference.” Molecular biology and evolution 33.2 (2016): 591-593.

Multi-population LD statistics

Using moment equations for the two-locus haplotype distribution, moments.LD
lets us compute a large family of linkage disequilibrium statistics in models
with arbitrary mutation and recombination rates and flexible demographic
history with any number of populations. The statistics are stored in
a different way that the SFS, but much of the API for implementing demographic
events and integration is largely consistent between the SFS and LD methods.

If you use moments.LD in your research, please cite:

	[Ragsdale2019]: Ragsdale, A. P. & Gravel, S. (2019).
Models of archaic admixture and recent history
from two-locus statistics. PLoS Genetics, 15(6), e1008204.

	[Ragsdale2020]: Ragsdale, A. P. & Gravel, S. (2020).
Unbiased estimation of linkage disequilibrium
from unphased data. Mol Biol Evol, 37(3), 923-932.

Linkage disequilibrium

The LD statistics that moments.LD computes are low-order summaries of
expected LD between pairs of loci. In particular, we compute
\(\mathbb{E}[D^2]\), the expectation of the numerator of the familiar
\(r^2\) measure of LD. From this system of equations, we also compute
\(\mathbb{E}[Dz] = \mathbb{E}[D(1-2p)(1-2q)]\), where \(p\) and
\(q\) are the allele frequencies at the left and right loci, respectively;
and we also compute \(\pi_2=\mathbb{E}[p(1-p)q(1-q)]\), a measure of the
“joint heterozygosity” of the two loci [Hill1968].

These statistics are stored in a list of arrays, where each list element
corresponds to a given recombination rate, \(\rho = 4N_er\), where r is
the recombination probability separating loci. The length of the list is the
length of the number of recombination rates given, plus one, as the last entry
stores the single-locus expected heterozygosity:

import moments, moments.LD
theta = 0.001 # the mutation rate 4*Ne*u
rho = [0, 1, 10] # recombination rates 4*Ne*r between loci
y = moments.LD.Demographics1D.snm(rho=rho, theta=theta) # steady-state expectations
y

LDstats([[1.38888889e-07 1.11111111e-07 3.05555556e-07]
 [8.59375000e-08 6.25000000e-08 2.81250000e-07]
 [2.01612903e-08 8.06451613e-09 2.54032258e-07]], [0.001], num_pops=1, pop_ids=None)

Here, we can see the decay of LD with increasing recombination rate, and also
that the heterozygosity equals the scaled mutation rate at steady-state, as
expected. On any LD object, we can get the list of statistics present by
calling:

y.names()

(['DD_0_0', 'Dz_0_0_0', 'pi2_0_0_0_0'], ['H_0_0'])

The underscores index the populations for that statistic, so DD_0_0
represents \(\mathbb{E}[D_0 D_0] = \mathbb{E}[D_0^2]\), Dz_0_0_0
represents \(\mathbb{E}[D_0(1-2p_0)(1-2q_0)]\), and pi2_0_0_0_0
represents \(\mathbb{E}[p_0(1-p_0)q_0(1-q_0)]\). Here, there is only the
one population (indexed by zero), but it should be clear how the indexing
extends to additional populations.

One of the great strengths of moments.LD is that while it only computes
low-order moments of the full two-locus haplotype distribution, it allows us to
expand the basis of statistics to include many populations. For example, one of
the example demographic models for two populations is
Demographics2D.split_mig, in which a single population splits into two
descendant populations, each with their own relative constant sizes and
connected by symmetric migration.

y = moments.LD.Demographics2D.split_mig((0.5, 2.0, 0.2, 1.0), rho=1.0)
here, the parameters of split_mig are (T, nu0, nu1, m_sym)
print(y.names())
y

(['DD_0_0', 'DD_0_1', 'DD_1_1', 'Dz_0_0_0', 'Dz_0_0_1', 'Dz_0_1_1', 'Dz_1_0_0', 'Dz_1_0_1', 'Dz_1_1_1', 'pi2_0_0_0_0', 'pi2_0_0_0_1', 'pi2_0_0_1_1', 'pi2_0_1_0_1', 'pi2_0_1_1_1', 'pi2_1_1_1_1'], ['H_0_0', 'H_0_1', 'H_1_1'])

LDstats([[8.56693276e-08 5.27620533e-08 8.04349065e-08 7.02703408e-08
 2.47530535e-08 5.40257063e-08 1.30712522e-07 4.83611466e-08
 5.90156000e-08 2.29151341e-07 2.86561358e-07 2.68396037e-07
 3.74454189e-07 3.53031720e-07 3.37988994e-07]], [0.00088909 0.00116239 0.00110805], num_pops=2, pop_ids=None)

Notice that already with just two populations we pick up many additional statistics:
not just \(\mathbb{E}[D_0^2]\) and \(\mathbb{E}[D_1^2]\), but also the cross
population covariance of \(D\): \(\mathbb{E}[D_0 D_1]\), as well as all possible
combinations of \(D\), \(p\), and \(q\) for the Dz and pi2 moments.
This is what makes such LD computation an efficient and powerful approach for inference:
it is very fast to compute, it can be extended to many populations, and it gives us
a large set informative statistics to compare to data and
run inference.

LD decay curves

We are most often interested in examining how LD depends on recombination distances
separating pairs of loci, given some underlying demography. Allele frequency
correlations due to linkage are expected to break down faster with larger
recombination distances, so that statistics such as \(D^2\) decrease toward zero
with increasing distances between SNPs.

In the literature, we typically see the decay of
\(r^2 = \mathbb{E}\left[\frac{D^2}{\pi_2}\right]\) or
\(\sigma_d^2 = \frac{\mathbb{E}[D^2]}{\mathbb{E}[\pi_2]}\) reported. These are
related quantities, but there is a difference between the ratio of averages and
the average of ratio. While solving for \(r^2\) is very difficult, our moments
framework immediately provides the expectations for \(\sigma_d^2\) and other
statistics of the same form (such as what we could call
\(\sigma_{Dz} = \frac{\mathbb{E}[Dz]}{\mathbb{E}[\pi_2]}\)).

Here, we’ll use demes to define a few simple models (which we’ll illustrate with
demesdraw), and explore how the decay of \(\sigma_d^2\) and \(\sigma_{Dz}\)
are affected by single-population demographic events. (Check out how to
use Demes with moments.)

import demes, demesdraw
import matplotlib.pylab as plt

b1 = demes.Builder()
b1.add_deme(name="A", epochs=[dict(start_size=5000)])
demog_constant = b1.resolve()

b2 = demes.Builder()
b2.add_deme(
 name="A",
 epochs=[
 dict(start_size=5000, end_time=1000),
 dict(start_size=1000, end_time=400),
 dict(start_size=5000, end_time=0)
]
)
demog_bottleneck = b2.resolve()

b3 = demes.Builder()
b3.add_deme(
 name="A",
 epochs=[dict(start_size=5000, end_time=600), dict(end_size=10000, end_time=0)]
)
demog_growth = b3.resolve()

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4))
demesdraw.size_history(demog_constant, ax=ax1, invert_x=True)
demesdraw.size_history(demog_bottleneck, ax=ax2, invert_x=True)
demesdraw.size_history(demog_growth, ax=ax3, invert_x=True)
ax1.set_ylim(top=10000)
ax2.set_ylim(top=10000)
ax3.set_ylim(top=10000)
ax1.set_title("Constant size")
ax2.set_title("Bottleck and recovery")
ax3.set_title("Recent exponential growth");
fig.tight_layout()

[image: ../_images/ld_4_0.png]

For each of these models, we’ll compute LD statistics over a range of recombination
rates, and then plot the decay curves.

import numpy as np

set up recombination rates
rhos = np.logspace(-2, 2, 21)

compute statistics and normalize to get sigma-d^2 and sigma-Dz
y_constant = moments.Demes.LD(demog_constant, sampled_demes=["A"], rho=rhos)
sigma_constant = moments.LD.Inference.sigmaD2(y_constant)

y_bottleneck = moments.Demes.LD(demog_bottleneck, sampled_demes=["A"], rho=rhos)
sigma_bottleneck = moments.LD.Inference.sigmaD2(y_bottleneck)

y_growth = moments.Demes.LD(demog_growth, sampled_demes=["A"], rho=rhos)
sigma_growth = moments.LD.Inference.sigmaD2(y_growth)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

ax1.plot(rhos, sigma_constant.LD()[:, 0], label="Constant")
ax1.plot(rhos, sigma_bottleneck.LD()[:, 0], label="Bottleneck")
ax1.plot(rhos, sigma_growth.LD()[:, 0], label="Exp. growth")

ax2.plot(rhos, sigma_constant.LD()[:, 1], label="Constant")
ax2.plot(rhos, sigma_bottleneck.LD()[:, 1], label="Bottleneck")
ax2.plot(rhos, sigma_growth.LD()[:, 1], label="Exp. growth")

ax1.set_yscale("log")
ax2.set_yscale("log")
ax1.set_xscale("log")
ax2.set_xscale("log")
ax1.set_xlabel(r"ρ")
ax2.set_xlabel(r"ρ")
ax1.set_ylabel(r"σ_d^2")
ax2.set_ylabel(r"σ_{Dz}")
ax1.legend()
ax2.legend()
fig.tight_layout()

[image: ../_images/ld_5_0.png]

Multiple populations

The statistic \(\mathbb{E}[D_i D_j]\), where \(i\) and \(j\) index
two populations, is the covariance of LD between those populations. If these two
population split from a common ancestral population, just after their split the
covariance is equal to \(\mathbb{E}[D^2]\) in the ancestral population. It
then decays over time, to zero if there is no migration between them and to some
positive value when they are connected by ongoing migration.

Here, we consider a simple split with isolation model and compute that covariance
at different times in their history.

b = demes.Builder()
b.add_deme(name="ancestral", epochs=[dict(start_size=2000, end_time=1000)])
b.add_deme(
 name="deme1",
 ancestors=["ancestral"],
 epochs=[dict(start_size=1500, end_size=1000)]
)
b.add_deme(
 name="deme2",
 ancestors=["ancestral"],
 epochs=[dict(start_size=500, end_size=3000)]
)
g = b.resolve()

get LD stats between deme1 and deme2 and times in the past, using ancient samples
ts = np.linspace(999, 1, 11, dtype="int")
rhos = [0, 1, 2]
def get_covD(g, ts, rhos):
 covD = {rho: [] for rho in rhos}
 for t in ts:
 y = moments.Demes.LD(
 g,
 sampled_demes=["deme1", "deme2"],
 sample_times=[t, t],
 rho=rhos
)
 for rho in rhos:
 covD[rho].append(
 moments.LD.Inference.sigmaD2(y)[rhos.index(rho)][y.names()[0].index("DD_0_1")]
)
 return covD

covD = get_covD(g, ts, rhos)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

demesdraw.tubes(g, ax=ax1)

for rho in rhos:
 ax2.plot(ts, covD[rho], label=rf"$\rho={rho}$")

ax2.invert_xaxis()
ax2.set_xlabel("Time ago (gens)")
ax2.set_ylabel(r"$\sigma_{D_{1, 2}}$")
ax2.legend();

[image: ../_images/ld_6_0.png]

We can see that without migration, covariance of LD across populations is expected
to decay over time. If instead the two populations are connected by ongoing migration,
LD will continue to have positive covariance, even long after their split from the
ancestral population.

b.add_migration(demes=["deme1", "deme2"], rate=2e-3)
g = b.resolve()

covD = get_covD(g, ts, rhos)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

demesdraw.tubes(g, ax=ax1)

for rho in rhos:
 ax2.plot(ts, covD[rho], label=rf"$\rho={rho}$")

ax2.invert_xaxis()
ax2.set_xlabel("Time ago (gens)")
ax2.set_ylabel(r"$\sigma_{D_{1, 2}}$")
ax2.legend();

[image: ../_images/ld_7_0.png]

Archaic admixture

Finally, as shown in [Ragsdale2019], the \(\sigma_{Dz}\) statistic is
particularly sensitive to archaic admixture. Unlike \(\mathbb{E}[D^2]\),
it is strongly elevated above single-ancestry expectations even with
relatively small proportions of admixture from a deeply diverged source. Here,
we have a very simple model of population that branches off from the focal
population in the deep past and then provides 2% ancestry through admixture
much more recently.

def admixture_model(t_pulse, prop=0.02):
 b = demes.Builder()
 b.add_deme(name="A", epochs=[dict(start_size=10000)])
 b.add_deme(
 name="B",
 ancestors=["A"],
 start_time=20000,
 epochs=[dict(start_size=2000, end_time=t_pulse)]
)
 b.add_pulse(sources=["B"], dest="A", proportions=[prop], time=t_pulse)
 return b.resolve()

rhos = np.logspace(-2, 2, 21)

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4))

demesdraw.tubes(admixture_model(1000), ax=ax1)

without admixture
g = admixture_model(100, prop=0)
y = moments.Demes.LD(g, sampled_demes=["A"], rho=rhos)
sigma_d2 = moments.LD.Inference.sigmaD2(y)
ax2.plot(rhos, sigma_d2.LD()[:, 0], "k--", lw=2, label="No admixture")
ax3.plot(rhos, sigma_d2.LD()[:, 1], "k--", lw=2)

varying admixture time
for t in [1, 200, 500, 1000, 2000]:
 g = admixture_model(t)
 y = moments.Demes.LD(g, sampled_demes=["A"], rho=rhos)
 sigma_d2 = moments.LD.Inference.sigmaD2(y)
 ax2.plot(rhos, sigma_d2.LD()[:, 0], lw=1, label="$T_{pulse}=$"+f"${t}$")
 ax3.plot(rhos, sigma_d2.LD()[:, 1], lw=1)

ax2.legend()
ax2.set_xscale("log")
ax2.set_yscale("log")
ax3.set_xscale("log")
ax3.set_yscale("log")
ax2.set_xlabel(r"ρ")
ax3.set_xlabel(r"ρ")
ax2.set_ylabel(r"σ_d^2")
ax3.set_ylabel(r"σ_{Dz}")
fig.tight_layout();

[image: ../_images/ld_8_0.png]

Demographic events

As seen above, we can use either demes or the API to compute LD statistics
under some demography. While demes is a very useful tool for building and
visualizing demographic models, we sometimes want to use the built in functions
to apply demographic events and integrate the LD stats object directly.
Mirroring the moments API for manipulating SFS, we apply demographic events
to LD objects using demographic functions that return a new LDstats object:

Extinction/marginalization

If a population goes extinct, or if we just want to stop tracking statistics involving
that population, we can use y.marginalize(idx) to remove a given population or
set of populations from the LD stats. Here, idx can be either an integer index or
a list of integer indexes. y.marginalize() returns a new LD stats object with the
specified populations removed and the population IDs preserved for the remaining
populations (if given in the input LD stats).

Population splits

To split one population, we use y.split(i, new_ids=["child1", "child2"]), where
i is the integer index of the population to split, and the optional argument
new_ids lets us set the split population IDs. Note that if the input LD stats do
not have population IDs defined (i.e y.pop_ids == None), we cannot specify new
IDs.

Admixture and mergers

Admixture and merge events take two populations and combine them with given fractions
of ancestry from each. The new admixed/merged population is placed at the end of the
array of population indexes, and the only difference been y.admix() and
y.merge() is that the merge function then removes the parental populations
(i.e. the parents are marginalized after admixture).

For both functions, usage is y.admix(idx0, idx1, f, new_id="xxx"). We specify
the indexes of the two parental populations (idx0 and idx1) and the proportion
f contributed by the first specified population idx0 (population idx1
contributes 1-f). We can also provide the ID of the admixed population using
``new_id:

y = moments.LD.Demographics2D.snm(pop_ids=["A", "B"])
print(y.pop_ids)
y = y.admix(0, 1, 0.2, new_id="C")
print(y.pop_ids)
y = y.merge(1, 2, 0.75, new_id="D")
print(y.pop_ids)

['A', 'B']
['A', 'B', 'C']
['A', 'D']

Pulse migration

Finally, we can apply discrete (or pulse) mass migration events with a given
proportion from one population to another. Here, we again specify 1) the index
of the source population, 2) the index of the target/destination population, and
3) the proportion of ancestry contributed:

y = y.pulse_migrate(1, 0, 0.1)
print(y.pop_ids) # population IDs are unchanged.

['A', 'D']

Integration

Integrating the LD stats also mirrors the SFS integration function, with some changes
to keyword arguments. At a minimum, we need to specify the relative sizes or size
function nu and the integration time T. When simulating LD stats for one or
more recombination rates, we also pass rho as a single rate or a list of rates,
as needed:

y.integrate(nu, T, rho=rho, theta=theta)

For multiple populations, we can also specify a migration matrix of size
\(n \times n\), where \(n\) is the number of populations that the LD stats
represents. Like the SFS integration, we can also specify any populations that are
frozen by passing a list of length \(n\) with True for frozen populations and
False for populations to integrate.

Unlike SFS integration, LD integration also lets us specify selfing rates within each
population, where selfing is a list of length \(n\) that specifies the selfing
rate within each deme, which must be between 0 and 1.

References

[Hill1968]
Hill, W. G., and Alan Robertson. “Linkage disequilibrium in finite populations.” Theoretical and applied genetics 38.6 (1968): 226-231.

[Ragsdale2019]
(1,2)
Ragsdale, Aaron P., and Simon Gravel. “Models of archaic admixture and recent history from two-locus statistics.” PLoS genetics 15.6 (2019): e1008204.

[Ragsdale2020]
Ragsdale, Aaron P., and Simon Gravel. “Unbiased estimation of linkage disequilibrium from unphased data.” Molecular Biology and Evolution 37.3 (2020): 923-932.

Parsing LD statistics

As described in the multi-population LD section, we are interested
in \(\sigma_d^2\)-type statistics, which is the ratio of expectations of
\(D^2\) and \(\pi_2 = p(1-p)q(1-q)\). Again, \(p\) and \(q\)
are the allele frequencies at the left and right loci.

To estimate these statistics from data, we take the average of each LD statistic
over all pairs of observed (biallelic) SNPs at a given recombination distance,
and then divide by the observed \(\pi_2\) in one of the populations (the
“normalizing” population). As described below, we also use a block bootstrapping
approach to estimate variances and covariances of observed statistics at each
recombination distance, which is used in
inference and computing confidence intervals.

Binned LD decay

To estimate LD decay curves from the data, we bin all pairs of observed SNPs by
recombination distance. While we can bin by physical distance (bps) separating
SNPs, genetic maps are non-uniform and physical distance does not perfectly
correlate with genetic distance at small scales. If we have a recombination map
available, it is preferable to compute and compare statistics using that map.

Recombination rate bins are defined by bin edges, which is a list or array with
length equal to the number of desired bins plus one. Bin edges should be
monotonically increasing, and are thus adjacent without gaps between bins. Thus,
bins are defined as semi-open intervals:

import moments.LD
import numpy as np

bin_edges = np.array([0, 1e-6, 1e-5, 1e-4])
print("Bins:")
for b_l, b_r in zip(bin_edges[:-1], bin_edges[1:]):
 print(f"[{b_l}, {b_r})")

Bins:
[0.0, 1e-06)
[1e-06, 1e-05)
[1e-05, 0.0001)

There are a few considerations to keep in mind. In practice, very short distances
can be problematic, because “non-standard” evolutionary processes can distort
allele frequency correlations for tightly linked loci. For example, our evolutionary
model does not include multi-nucleotide mutations [Harris2014] or gene conversion
[Ardlie2001], both of which operate at short distances.

Thus, when working with real data we recommend omitting bins of very short
recombination distances. In practice, we typically drop bins with length less
than \(r=5\times 10^{-6}\), which corresponds to roughly a few hundred bp on
average in humans.

Parsing from a VCF

The primary function of the Parsing module is computing LD statistics from an
input VCF. There are a number of options available, but the primary inputs are
the path to the VCF file and the bins of distances separating loci. Typically, we
work in recombination distance, in which case a recombination map is also required.
If we do not have a recombination map available, we can bin by base pair distances
instead.

The function moments.LD.Parsing.compute_ld_statistics returns a dictionary with
the bins, returned statistics, populations, and sums of each statistic over the
provided bins. For example:

r_bins = np.logspace(-6, -3, 7)
ld_stats = moments.LD.Parsing.compute_ld_statistics(
 vcf_path, r_bins=r_bins, rec_map_file=map_path)

Using a recombination map

The input recombination map is specified as a text file, with the first column giving
positions along the chromosome and additional column(s) defining the cumulative map(s),
typically in units of cM. The header line is “Pos Map1 Map2 (etc)”, and we can use
any map in the file by specifying the map_name. If no map name is given, or the
specified map name does not match a genetic map in the header, we use the map in the
first column.

Typically, maps are given in units of centi-Morgans, and the default behavior is to
assume cM units. If the map is given in units of Morgans, we need to set cM=False.

Populations and pop-file

We often have data from more than one population, so we need to be able to specify
which samples in the VCF correspond to which populations. This is handled by passing
a file that assigns each sample to a population. For example, the population file is
written as

sample pop
sid_0 pop_A
sid_1 pop_B
sid_2 pop_A
sid_3 pop_A
sid_4 pop_B
...

Then to include the population information in the function, we also pass a list
of the populations to compute statistics for. Samples from omitted populations
are dropped from the data.

pops = ["pop_A", "pop_B"]
ld_stats = ld_stats = moments.LD.Parsing.compute_ld_statistics(
 vcf_path,
 r_bins=r_bins,
 rec_map_file=map_path,
 pop_file=pop_file_path,
 pops=pops
)

Masking and using bed files

If there are multiple chromosomes or contigs included in the VCF, we specify
which chromosome to compute statistics for by setting the chromosome flag.
We can also subset a chromosome by including a bed file, which will filter out
all SNPs that fall outside the region intervals given in the bed file. Bed files
have the format {chrom}\t{left_pos}\t{right_pos}, which defines a semi-open
interval. The path to the bed file is provided with the bed_file argument.

Computing a subset of statistics

Sometimes we may wish to only compute a subset of possible LD statistics. By
default, the parsing function computes all statistics possible for the number
of populations provided. Instead, we can specify the stats_to_compute, which
is a list (of length 2) of lists. The first list are the LD statistics to return,
and the second list has the heterozygosity statistics to return. Statistic names
follow the convention in moments.LD.Util.moment_names(num_pops), and should
be formatted accordingly.

Phased vs unphased data

We can compute LD statistics from either phased or unphased data. The default
behavior is to assume that phasing is unknown, and use_genotypes is
True by default. If we want to compute LD using phased data, we set
use_genotypes=False, and parsing uses phased haplotypes instead. In
general, phasing errors can bias LD statistics, sometimes significantly, and
using genotypes instead of haplotypes only slightly increases uncertainty in
most cases. Therefore, we usually recommend leaving use_genotypes=True.

Computing averages and covariances over regions

From moments.LD.Parsing.compute_ld_statistics(), we get LD statistic sums
from the regions in a VCF, perhaps constrained by a bed file. Our strategy is
to divide our data into some large number of roughly equally sized chunks, for
example 500 regions across all 22 autosomes in human data. We then compute LD
statistics independently for each region (it helps to parallelize that step,
using a compute cluster). From those outputs, we can then compute average
statistics genome-wide, as well as covariances of statistics within each bin.
Those covariances are needed to be able to compute likelihoods and run
optimization.

The outputs of compute_ld_statistics are compiled in a dictionary, where
the keys are unique region identifiers, and items the outputs of that function.
For example:

region_stats = {
 0: moments.LD.Parsing.compute_ld_statistics(VCF, bed_file="region_0.bed", ...),
 1: moments.LD.Parsing.compute_ld_statistics(VCF, bed_file="region_1.bed", ...),
 2: moments.LD.Parsing.compute_ld_statistics(VCF, bed_file="region_2.bed", ...),
 ...
}

Mean and variance-covariance matrices are computed by calling
bootstrap_data, passing the region statistics dictionary, and optionally
the index of the population to normalize \(\sigma_d^2\) statistics by. By
default, the normalizing population is the first (index 0).

mv = moments.LD.Parsing.bootstrap_data(region_stats)

mv contains the bins, statistics, and populations, as well as lists of mean
statistics and variance-covariance matrices. This data can then be directly
compared to model expectations and used in inference.

Example

Using msprime [https://tskit.dev/msprime/docs/latest/intro.html]
[Kelleher2016], we’ll simulate some data under an isolation-with-migration
(IM) model and then compute LD and heterozygosity statistics using the
LD.Parsing methods. First, the simulation will use the
demes-msprime interface, which are then written as a VCF.

The YAML-file specifying the model is

description: A simple isolation-with-migration model
time_units: generations
demes:
- name: anc
 epochs: [{start_size: 10000, end_time: 1500}]
- name: deme0
 ancestors: [anc]
 epochs: [{start_size: 2000}]
- name: deme1
 ancestors: [anc]
 epochs: [{start_size: 20000}]
migrations:
- demes: [deme0, deme1]
 rate: 1e-4

And we use msprime to simulate 1Mb of data, using a constant recombination
and mutation rate.

import msprime
import demes
import os

set up simulation parameters
L = 1e6
u = r = 1.5e-8
n = 10

g = demes.load("data/im-parsing-example.yaml")
demog = msprime.Demography.from_demes(g)

trees = msprime.sim_ancestry(
 {"deme0": n, "deme1": n},
 demography=demog,
 sequence_length=L,
 recombination_rate=r,
 random_seed=321,
)

trees = msprime.sim_mutations(trees, rate=u, random_seed=123)

with open("data/im-parsing-example.vcf", "w+") as fout:
 trees.write_vcf(fout)

This simulation had 10 diploid individuals per population, and
msprime/tskit writes their IDs as tsk_0, tsk_1, etc:

##fileformat=VCFv4.2
##source=tskit 0.3.5
##FILTER=<ID=PASS,Description="All filters passed">
##contig=<ID=1,length=1000000>
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT	tsk_0	tsk_1	tsk_2	tsk_3	tsk_4	tsk_5	tsk_6	tsk_7	tsk_8	tsk_9	tsk_10	tsk_11	tsk_12	tsk_13	tsk_14	tsk_15	tsk_16	tsk_17	tsk_18	tsk_19
1	221	.	A	T	.	PASS	.	GT	1|1	1|0	1|1	1|1	0|1	0|1	0|0	1|1	0|1	1|1	1|1	1|1	1|1	1|1	1|1	1|1	1|1	1|1	1|1	1|1
1	966	.	A	C	.	PASS	.	GT	0|0	0|0	0|0	0|0	0|0	0|0	0|0	1|1	0|0	0|0	0|0	0|0	0|1	0|0	0|0	0|0	0|0	0|0	0|1	1|0
1	1082	.	G	A	.	PASS	.	GT	0|0	0|1	0|0	0|0	1|0	1|0	1|1	0|0	1|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0
1	1133	.	G	T	.	PASS	.	GT	0|0	0|1	0|0	0|0	1|0	1|0	1|1	0|0	1|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0	0|0

To parse this data, we need the file that maps samples to populations and
the recombination map file (the total map length is found by
\(1 \times 10^{6} \text{ bp} \times 1.5 \times 10^{-8} \text{ M/bp} \times 100 \text{ cM/M}\)):

sample pop
tsk_0 deme0
tsk_1 deme0
tsk_2 deme0
tsk_3 deme0
tsk_4 deme0
tsk_5 deme0
tsk_6 deme0
tsk_7 deme0
tsk_8 deme0
tsk_9 deme0
tsk_10 deme1
tsk_11 deme1
tsk_12 deme1
tsk_13 deme1
tsk_14 deme1
tsk_15 deme1
tsk_16 deme1
tsk_17 deme1
tsk_18 deme1
tsk_19 deme1

Pos Map(cM)
0 0
1000000 1.5

With all this, we can now compute LD based on recombination distance bins:

r_bins = np.array(
 [0, 1e-6, 2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3]
)

vcf_file = "data/im-parsing-example.vcf"
map_file = "data/im-parsing-example.map.txt"
pop_file = "data/im-parsing-example.samples.pops.txt"
pops = ["deme0", "deme1"]
ld_stats = moments.LD.Parsing.compute_ld_statistics(
 vcf_file,
 rec_map_file=map_file,
 pop_file=pop_file,
 pops=["deme0", "deme1"],
 r_bins=r_bins,
 report=False,
)

The output, ld_stats, is a dictionary with the keys bins, stats,
pops, and sums. To get the average statistics over multiple regions
(here, we only have a single region that we simulated), we use
means_from_region_data:

means = moments.LD.Parsing.means_from_region_data(
 {0: ld_stats}, ld_stats["stats"], norm_idx=0
)

This provides \(\sigma_d^2\)-type statistics relative to pi_2 in
deme0, and relative heterozygosities (also relative to deme0).
These statistics were computed from only a single relatively small region,
so they will be quite noisy. But we can still compare to expectations under
the input IM demographic model.

import demes
g = demes.load("data/im-parsing-example.yaml")

y = moments.Demes.LD(
 g,
 sampled_demes=["deme0", "deme1"],
 rho=4 * g["anc"].epochs[0].start_size * r_bins,
)

stats are computed at the bin edges - average to get midpoint estimates
y = moments.LD.LDstats(
 [(y_l + y_r) / 2 for y_l, y_r in zip(y[:-2], y[1:-1])] + [y[-1]],
 num_pops=y.num_pops,
 pop_ids=y.pop_ids,
)
y = moments.LD.Inference.sigmaD2(y)

plot LD decay curves for some statistics
moments.LD.Plotting.plot_ld_curves_comp(
 y,
 means[:-1],
 [],
 rs=r_bins,
 stats_to_plot=[
 ["DD_0_0", "DD_0_1", "DD_1_1"],
 ["Dz_0_0_0", "Dz_0_1_1", "Dz_1_1_1"],
 ["pi2_0_0_1_1", "pi2_0_1_0_1", "pi2_1_1_1_1"]
],
 labels=[[r"D_0^2", r"$D_0 D_1$", r"D_1^2"],
 [r"$Dz_{0,0,0}$", r"$Dz_{0,1,1}$", r"$Dz_{1,1,1}$"],
 [r"$\pi_{2;0,0,1,1}$", r"$\pi_{2;0,1,0,1}$", r"$\pi_{2;1,1,1,1}$"]
],
 plot_vcs=False,
 fig_size=(8, 3),
 show=True,
)

[image: ../_images/parsing_4_0.png]

Bootstrapping over multiple regions

Normally, we’ll want more data than from a single 1Mb region to compute
averages and variances of statistics. Using the same approach as the above
example, ld_stats for 100 replicates we computed (see example in the
moments repository here [https://bitbucket.org/simongravel/moments/src/master/examples/LD/]). From
this, each replicate set of statistics were placed in a dictionary, as
rep_stats = {0: ld_stats_0, 1: ld_stats_1, ..., 99: ld_stats_99}. This
dictionary can then be used to compute means and covariances of statistics.

mv = moments.LD.Parsing.bootstrap_data(ld_stats)

By simulating more data, the LD decay curves are much less noisy, and by
simulating multiple replicates, we also compute the variance-covariance
matrices for each bin and can include standard errors in the plots.

plot LD decay curves for some statistics
moments.LD.Plotting.plot_ld_curves_comp(
 y,
 mv["means"][:-1],
 mv["varcovs"][:-1],
 rs=r_bins,
 stats_to_plot=[
 ["DD_0_0", "DD_0_1", "DD_1_1"],
 ["Dz_0_0_0", "Dz_0_1_1", "Dz_1_1_1"],
 ["pi2_0_0_1_1", "pi2_0_1_0_1", "pi2_1_1_1_1"]
],
 labels=[[r"D_0^2", r"$D_0 D_1$", r"D_1^2"],
 [r"$Dz_{0,0,0}$", r"$Dz_{0,1,1}$", r"$Dz_{1,1,1}$"],
 [r"$\pi_{2;0,0,1,1}$", r"$\pi_{2;0,1,0,1}$", r"$\pi_{2;1,1,1,1}$"]
],
 plot_vcs=True,
 fig_size=(8, 3),
 show=True,
)

[image: ../_images/parsing_6_0.png]

Note

The means-covariances data is required for inference using LD statistics.
In Inferring demography with LD, we’ll use the
same mv data dictionary to refit the IM model as an example.

LD statistics in genotype blocks

moments.LD.Parsing also includes some functions for computing LD from
genotype (or haplotype) blocks. Genotype blocks are arrays of shape
\(L\times n\), where L is the number of loci and n is the sample size.
We assume a single population, and so we compute \(D^2\), \(Dz\),
\(\pi_2\), and \(D\), either pairwise or averaged over all pairwise
comparisons.

If we have a genotype matrix containing n diploid samples, genotypes are
coded as 0, 1, and 2, and we set genotypes=True. If we have a haplotype
matrix with data from n haploid copies, genotypes are coded as 0 and 1 only,
and we set genotypes=False.

For example, given a single genotype matrix, we compute all pairwise statistics
and average statistics as shown below:

L = 10
n = 5
G = np.random.randint(3, size=L * n).reshape(L, n)

all pairwise comparisons:
D2_pw, Dz_pw, pi2_pw, D_pw = moments.LD.Parsing.compute_pairwise_stats(G)

averages:
D2_ave, Dz_ave, pi2_ave, D_ave = moments.LD.Parsing.compute_average_stats(G)

Similarly, we can compute the pairwise or average statistics between two
genotype matrices. The matrices can have differing number of loci, but they
must have the same number of samples, as the genotype matrices are assumed to
come from different regions within the same samples.

L2 = 12
n = 5

G2 = np.random.randint(3, size=L2 * n).reshape(L2, n)

all pairwise comparisons:
D2_pw, Dz_pw, pi2_pw, D_pw = moments.LD.Parsing.compute_pairwise_stats_between(G, G2)

averages:
D2_ave, Dz_ave, pi2_ave, D_ave = moments.LD.Parsing.compute_average_stats_between(G, G2)

Note

Computing LD in genotype blocks uses C-extensions that are not built by
default, so are only available if these are built when compiling the
C-extensions. In order to use these methods, we need to build these
extensions using the --ld_extensions flag, as python setup.py
build_ext --ld_extensions -i.

References

[Ardlie2001]
Ardlie, Kristin, et al. “Lower-than-expected linkage disequilibrium between
tightly linked markers in humans suggests a role for gene conversion.”
The American Journal of Human Genetics 69.3 (2001): 582-589.

[Harris2014]
Harris, Kelley, and Rasmus Nielsen. “Error-prone polymerase activity causes
multinucleotide mutations in humans.” Genome research 24.9 (2014): 1445-1454.

[Kelleher2016]
Kelleher, Jerome, Alison M. Etheridge, and Gilean McVean. “Efficient
coalescent simulation and genealogical analysis for large sample sizes.”
PLoS computational biology 12.5 (2016): e1004842.

Inferring demography with LD

As described in the linkage disequilibrium and LD Parsing sections, we use a family of normalized LD and heterozygosity
statistics to compare between model expectations and data. We optimize
demographic model parameters to find the expected binned LD and heterozygosity
statistics that maximize a composite likelihood over all pairs of SNPs and
recombination bins.

In this section, we’ll describe the likelihood framework, how to define
demographic models that can be used in inference, how to run optimization using
moments’ built-in inference functions, and how to compute confidence
intervals. We include a short example, following the parsing of data simulated under an isolation-with-migration
model, to illustrate the main features and options.

Likelihood framework

For a given recombination distance bin indexed by \(i\), we have a set of
computed LD statistic means \(D_i\) from data along with the
variance-covariance matrix \(\Sigma_i\) as returned by
moments.LD.Parsing.bootstrap_data. We assume a multivariate Guassian
likelihood function, so that a model parameterized by \(\Theta\) that has
expected statistics \(\mu_i(\Theta)\) has likelihood

\[\mathcal{L}_i(\Theta | D_i) = P(D_i | \mu_i, \Sigma_i)
= \frac{\exp\left(-\frac{1}{2}(D_i-\mu_i)^T\Sigma_i^{-1}(D_i-\mu_i)\right)}{(2\pi)^{k/2}|\Sigma_i|^{1/2}}.\]

The likelihood is computed similarly for heterozygosity statistics, given their
variance-covariance matrix. Then the composite likelihood of two-locus data
across recombination bins and single-locus heterozygosity (indexed by
\(i=n+1\) where \(n\) is the total number of recombination bins), is

\[\mathcal{L} = \prod_{i=1}^{n+1}\mathcal{L}_i.\]

In practice, we work with the log of the likelihood, so that products turn to
sums and we can drop constant factors:

\[\log\mathcal{L} \propto -\frac{1}{2}\sum_{i=1}^{n+1} (D_i-\mu_i)^T\Sigma_i^{-1}(D_i-\mu_i).\]

As the data \(\{D_i, \Sigma_i\}\) is fixed, we search for the model
parameters \(\Theta\) that provide \(\{\mu_i\}\) that maximizes
\(\log\mathcal{L}\).

Defining demographic models

There are a handful of built-in demographic models for one-, two-, and
three-population scenarios that can be used in inference (see here). However, these are far from comprehensive and it is
likely that custom demographic models will need to be written for a given
inference problem. For inspiration, moments.LD.Demographics1D,
Demographics2D, and Demographics3D can be used as starting points and
as illustrations of how to structure model functions.

Demographic models all require a params positional argument and rho and
(optionally) theta keyword arguments. theta, the population-size scaled
mutation rate, does not play a role in inference using relative statistics, as
the mutation rate cancels in \(\sigma_d^2\)-type statistics.

For example, the IM model we simulated data under in the LD Parsing section
could be parameterized as

def model_func(params, rho=None, theta=0.001):
 nu0, nu1, T, M = params
 y = moments.LD.Numerics.steady_state(rho=rho, theta=theta)
 y = moments.LD.LDstats(y, num_pops=1)
 y = y.split(0)
 y.integrate([nu0, nu1], T, m=[[0, M], [M, 0]], rho=rho, theta=theta)
 return y

In the input demographic model to the simulations, we had the ancestral
effective population size as 10,000, the size of deme0 was 2,000, and the size
of deme1 was 20,000. The populations split 1,500 generations ago, and exchanged
migrants symmetrically at a rate of 0.0001 per-generation. Converted into
genetic units, nu0 = 0.2, nu1 = 2, T=1500 / 2 / 10000 = 0.075, and
M = 2 * 10000 * 0.0001 = 2.0.

Running optimization

Optimization with moments.LD, much like moments optimization with the
SFS, includes a handful functions that serve as wrappers for scipy
optimizers with options specific to working with LD statistics. The two primary
functions in moments.LD.Inference are

	optimize_log_fmin: Uses the downhill simplex algorithm on the log of
the parameters.

	optimize_log_powell: Uses the modified Powell’s method, which optimizes
slices of parameter space sequentially.

Each optimization method accepts the same arguments. Required positional
arguments are

	p0: The initial guess for the parameters in model_func.

	data: Structured as a list of lists of data means and data var-cov
matrices. I.e., data = [[means[0], means[1], ...], [varcovs[0], varcovs[1],
...]], with the final entry of the lists the means and varcovs of the
heterozygosity statistics.

	model_func: The demographic model to be fit (see above section).
Importantly, this is a list, where the first entry is the LD model, which
is always used, and the optional second entry is a demographic model for the
SFS (which is a rarely used option and can be ignored). So usually, we would
set model_func as [model_func_ld].

Additionally, we will almost always pass the list of unscaled recombination
bin edges as rs = [r0, r1, ..., rn], which defines n recombination bins.

The effective population size plays a different role in LD inference than it
does in SFS inference. For the site frequency spectrum, \(N_e\) merely acts
as a linear scaling factor and is absorbed by the scaled mutation rate
\(\theta\), which is treated as a free parameter. Here, \(N_e\) instead
rescales recombination rates, and because we use a recombination map to
determine the binning of data by recombination distances separating loci,
\(N_e\) is a parameter that must be either passed as a fixed value or
simultaneously fit in the optimization.

If Ne is a fixed value, we specify the population size using that keyword
argument. Otherwise, if Ne is to be fit, our list of parameters to fit by
convention includes Ne in the final position in the list. Typically, Ne
is not a parameter of the demographic model, as we work in rescaled genetic
units, so the parameters that get passed to model_func are params[:-1].
However, it is also possible to write a demographic model that also uses Ne
as a parameter. In this case we set pass_Ne to True, so that Ne
both rescales recombination rates and is a model parameter, and all params
are passed to model_func.

	Ne: The effective population size, used to rescale rs to get rhos
= 4 * Ne * rs.

	pass_Ne: Defaults to False. If True, the demographic model
includes Ne as a parameter (in the final position of input parameters).

Other commonly used options include

	fixed_params: Defaults to None. To fix some parameters, this should
be a list of equal length as p0, with None for parameters to be fit
and fixed values at corresponding indexes.

	lower_bound: Defaults to None. Constraints on the lower bounds during
optimization. These are given as lists of the same length of the parameters.

	upper_bound: Defaults to None. Constraints on the upper bounds during
optimization. These are given as lists of the same length of the parameters.

	statistics: Defaults to None, which assumes that all statistics are
present and in the conventional default order. If the data is missing some
statistics, we must specify which statistics are present using the subset of
statistic names given by moments.LD.Util.moment_names(num_pops).

	normalization: Defaults to 0. The index of the population to
normalize by, which should match the population index that we normalized by
when parsing the data.

	verbose: If an integer greater than 0, prints updates of the optimization
procedure at intervals given by that spacing.

Example

Using the data simulated in the Parsing section, we can
refit the demographic model under a parameterized IM model. For this, we could
use the moments.LD.Demographics2D.split_mig model as our model_func,
which is equivalent to the function we defined above (which we use in this
example). After loading the data and setting up the inference options, we’ll
use optimize_log_fmin to fit the model.

import moments.LD
import pickle

data = pickle.load(open("data/means.varcovs.split_mig.100_reps.bp", "rb"))

rs = [0, 1e-6, 2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3]

p_guess = [0.1, 2.0, 0.075, 2.0, 10000]
p0 = moments.LD.Util.perturb_params(p_guess, fold=0.2)

run optimization
opt_params, LL = moments.LD.Inference.optimize_log_fmin(
 p_guess,
 [data["means"], data["varcovs"]],
 [model_func],
 rs=rs,
 verbose=40,
)

get physical units, rescaling by Ne
physical_units = moments.LD.Util.rescale_params(
 opt_params, ["nu", "nu", "T", "m", "Ne"]
)

print("best fit parameters:")
print(f" N(deme0) : {physical_units[0]:.1f}")
print(f" N(deme1) : {physical_units[1]:.1f}")
print(f" Div. time (gen) : {physical_units[2]:.1f}")
print(f" Migration rate : {physical_units[3]:.6f}")
print(f" N(ancestral) : {physical_units[4]:.1f}")

40 , -214.296 , array([0.140269 , 1.95203 , 0.0514585 , 2.07543 , 12430])

80 , -130.758 , array([0.153478 , 2.00214 , 0.0541354 , 2.11845 , 11248.2])

120 , -77.1877 , array([0.184635 , 1.80666 , 0.0673507 , 2.0472 , 11068.5])

160 , -76.8557 , array([0.186388 , 1.80029 , 0.0685854 , 2.05002 , 11008.4])

200 , -76.823 , array([0.185232 , 1.80143 , 0.0679905 , 2.04797 , 11010.4])

240 , -76.8106 , array([0.185808 , 1.80374 , 0.0683159 , 2.05049 , 11000.2])

280 , -76.4522 , array([0.188075 , 1.81258 , 0.0692172 , 2.02497 , 10970.3])

320 , -74.2099 , array([0.183888 , 1.92246 , 0.0656908 , 1.82861 , 10918.1])

360 , -72.9169 , array([0.191533 , 2.01901 , 0.0680872 , 1.70206 , 10638.2])

400 , -72.7291 , array([0.192878 , 2.06349 , 0.0681534 , 1.66157 , 10576])

440 , -72.7222 , array([0.193385 , 2.06172 , 0.0684375 , 1.67061 , 10567.8])

best fit parameters:
 N(deme0) : 2042.8
 N(deme1) : 21785.4
 Div. time (gen) : 1445.7
 Migration rate : 0.000079
 N(ancestral) : 10569.8

These should be pretty close to the input demographic parameters from the
simulations! They won’t be spot on, as this was only using 100Mb of simulated
data, but we should be in the ballpark.

Computing confidence intervals

When running demographic inference, we get a point estimate for the best fit
demographic parameters. However, for an unknown underlying true value, it’s
important to also estimate what’s called a confidence interval. The CI tells us
the probability that the true value lies within some range, and provides some
information about which parameters in our demographic model are tightly
constrained and which parameters we have little power to pin down.

moments.LD can estimate confidence intervals using either the Fisher
Information Matrix (FIM) or the Godambe Information Matrix (GIM). In almost all
cases when using real data (or even most simulated data), the FIM will estimate
a much smaller CI than the GIM. This occurs because the FIM assumes all data
points that we’ve used are independent, when in reality there is linkage that
causes data points to be sometimes highly correlated between pairs of loci and
between recombination bins. The Godambe method uses bootstrap-resampled
replicates of the data to account for this correlation and does a much better
job at estimating the true underlying CIs [Coffman2016].

Note

If you use the Godambe approach to estimate confidence intervals, please
cite [Coffman2016]. Alec originally implemented this approach in dadi,
and moments has more-or-less used this same implementation here.

To create bootstrap replicates from the dictionary of data sums computed over
regions, where rep_data = {0: ld_stats_0, 1: ld_stats_1, ...}, e.g., we use

num_boots = 100
norm_idx = 0
bootstrap_sets = moments.LD.Parsing.get_bootstrap_sets(
 rep_data, num_bootstraps=num_boots, normalization=norm_idx)

These bootstrap sets can then be used as the inputs to the moments.LD.Godambe
methods. The two CI estimation methods are

	FIM_uncert: Uses the Fisher Information Matrix. Usage is
FIM_uncert(model_func, opt_params, means, varcovs, r_edges=rs).

	GIM_uncert: Uses the Godambe Information Matrix. Usage is GIM_uncert(model_func, bootstrap_sets, opt_params, means, varcovs, r_edges=rs).

In each case, the model function is the same as used in inference (some
manipulation may be needed if we had any fixed parameters), means and varcovs
are the same data as input to the inference function, and r_edges are the
bin edges used in the inference. Additional options for some corner cases are
described in the API reference for LD methods.

Example

We’ll use both the FIM and GIM to compute uncertainties from the above example
inference.

Using the FIM approach:

using FIM
uncerts_FIM = moments.LD.Godambe.FIM_uncert(
 model_func,
 opt_params,
 data["means"],
 data["varcovs"],
 r_edges=rs,
)

lower and upper CIs, in genetic units
lower = opt_params - 1.96 * uncerts_FIM
upper = opt_params + 1.96 * uncerts_FIM

convert to physical units
lower_pu = moments.LD.Util.rescale_params(lower, ["nu", "nu", "T", "m", "Ne"])
upper_pu = moments.LD.Util.rescale_params(upper, ["nu", "nu", "T", "m", "Ne"])

print("95% CIs:")
print(f" N(deme0) : {lower_pu[0]:.1f} - {upper_pu[0]:.1f}")
print(f" N(deme1) : {lower_pu[1]:.1f} - {upper_pu[1]:.1f}")
print(f" Div. time (gen) : {lower_pu[2]:.1f} - {upper_pu[2]:.1f}")
print(f" Migration rate : {lower_pu[3]:.6f} - {upper_pu[3]:.6f}")
print(f" N(ancestral) : {lower_pu[4]:.1f} - {upper_pu[4]:.1f}")

95% CIs:
 N(deme0) : 1828.5 - 2267.9
 N(deme1) : 18863.7 - 24873.3
 Div. time (gen) : 1269.6 - 1631.3
 Migration rate : 0.000069 - 0.000088
 N(ancestral) : 10165.2 - 10974.3

And using the GIM approach:

bootstrap_sets = pickle.load(open("data/bootstrap_sets.split_mig.100_reps.bp", "rb"))

using GIM
uncerts_GIM = moments.LD.Godambe.GIM_uncert(
 model_func,
 bootstrap_sets,
 opt_params,
 data["means"],
 data["varcovs"],
 r_edges=rs,
)

lower and upper CIs, in genetic units
lower = opt_params - 1.96 * uncerts_GIM
upper = opt_params + 1.96 * uncerts_GIM

convert to physical units
lower_pu = moments.LD.Util.rescale_params(lower, ["nu", "nu", "T", "m", "Ne"])
upper_pu = moments.LD.Util.rescale_params(upper, ["nu", "nu", "T", "m", "Ne"])

print("95% CIs:")
print(f" N(deme0) : {lower_pu[0]:.1f} - {upper_pu[0]:.1f}")
print(f" N(deme1) : {lower_pu[1]:.1f} - {upper_pu[1]:.1f}")
print(f" Div. time (gen) : {lower_pu[2]:.1f} - {upper_pu[2]:.1f}")
print(f" Migration rate : {lower_pu[3]:.6f} - {upper_pu[3]:.6f}")
print(f" N(ancestral) : {lower_pu[4]:.1f} - {upper_pu[4]:.1f}")

95% CIs:
 N(deme0) : 1581.2 - 2551.3
 N(deme1) : 17105.0 - 26931.2
 Div. time (gen) : 1030.5 - 1906.9
 Migration rate : 0.000059 - 0.000096
 N(ancestral) : 9854.5 - 11285.0

We can see above that the FIM uncertainties are considerably smaller (i.e. more
constrained) than the GIM uncertainties. However, the GIM uncertainties are to
be preferred here, as they more accurately estimate the underlying true
uncertainty in the demographic inference.

References

[Coffman2016]
(1,2)
Coffman, Alec J., et al. “Computationally efficient composite likelihood
statistics for demographic inference.”
Molecular biology and evolution 33.2 (2016): 591-593.

Specifying models with demes

New in version 1.1, moments can compute the SFS and LD statistics
directly from a demes-formatted demographic model. To learn about how to
describe a demographic model using demes, head to the demes repository [https://github.com/popsim-consortium/demes-python] or documentation [https://popsim-consortium.github.io/demes-docs/main/index.html] to learn
about specifying multi-population demographic models using demes.

What is demes?

Demographic models specify the historical size changes, migrations, splits and
mergers of related populations. Specifying demographic models using moments
or practically any other simulation engine can become very complicated and
error prone, especially when we want to model more than one population (e.g.
[Ragsdale2020]). Even worse, every individual software has its own language and
methods for specifying a demographic model, so a user has to reimplement the
same model across multiple software, which nobody enjoys. To resolve these
issues of reproducibility, replication, and susceptibility to errors, demes
provides a human-readable specification of complex demography that is designed
to make it easier to implement and share models and to be able to use that
demography with multiple simulation engines.

Demes models are written in YAML, and they are then automatically parsed to
create an internal representation of the demography that is readable by
moments. moments can then iterate through the epochs and demographic
events in that model and compute the SFS or LD.

Simulating the SFS and LD using a demes model

Computing expectations for the SFS or LD using a demes model is designed to
be as simple as possible. In fact, there is no need for the user to specify any
demographic events or integrate the SFS or LD objects. moments does all of
that for you.

It’s easiest to see the functionality through example. In the tests directory,
there is a YAML description of the [Gutenkunst2009] Out-of-African model:

description: The Gutenkunst et al. (2009) three-population model of human history.
doi:
 - https://doi.org/10.1371/journal.pgen.1000695
time_units: years
generation_time: 25
demes:
 - name: ancestral
 description: Equilibrium/root population
 epochs:
 - end_time: 220e3
 start_size: 7300
 - name: AMH
 description: Anatomically modern humans
 ancestors: [ancestral]
 epochs:
 - end_time: 140e3
 start_size: 12300
 - name: OOA
 description: Bottleneck out-of-Africa population
 ancestors: [AMH]
 epochs:
 - end_time: 21.2e3
 start_size: 2100
 - name: YRI
 description: Yoruba in Ibadan, Nigeria
 ancestors: [AMH]
 epochs:
 - start_size: 12300
 end_time: 0
 - name: CEU
 description: Utah Residents (CEPH) with Northern and Western European Ancestry
 ancestors: [OOA]
 epochs:
 - start_size: 1000
 end_size: 29725
 end_time: 0
 - name: CHB
 description: Han Chinese in Beijing, China
 ancestors: [OOA]
 epochs:
 - start_size: 510
 end_size: 54090
 end_time: 0
migrations:
 - demes: [YRI, OOA]
 rate: 25e-5
 - demes: [YRI, CEU]
 rate: 3e-5
 - demes: [YRI, CHB]
 rate: 1.9e-5
 - demes: [CEU, CHB]
 rate: 9.6e-5

This model describes all the populations (demes), their sizes and times of
existence, their relationships to other demes (ancestors and descendents), and
migration between them. To simulate using this model, we just need to specify
the populations that we want to sample lineages from, the sample size in each
population, and (optionally) the time of sampling. If sampling times are not
given we assume we sample at present time. Ancient samples can be specified by
setting sampling times greater than 0.

Let’s simulate 10 samples from each YRI, CEU, and CHB:

import moments
import numpy as np
ooa_model = "../tests/test_files/gutenkunst_ooa.yaml"

we can visualize the model using demesdraw
import demes, demesdraw, matplotlib.pylab as plt
graph = demes.load(ooa_model)
demesdraw.tubes(graph, log_time=True, num_lines_per_migration=3);

[image: ../_images/demes_1_0.png]

Let’s simulate 10 samples from each YRI, CEU, and CHB:

sampled_demes = ["YRI", "CEU", "CHB"]
sample_sizes = [10, 10, 10]

fs = moments.Spectrum.from_demes(
 ooa_model, sampled_demes=sampled_demes, sample_sizes=sample_sizes
)

print("populations:", fs.pop_ids)
print("sample sizes:", fs.sample_sizes)
print("FST:")
for k, v in fs.Fst(pairwise=True).items():
 print(f" {k[0]}, {k[1]}: {v:.3f}")

populations: ['YRI', 'CEU', 'CHB']
sample sizes: [10 10 10]
FST:
 YRI, CEU: 0.189
 YRI, CHB: 0.205
 CEU, CHB: 0.147

It’s that simple. We can also simulate data for a subset of the populations,
while still accounting for migration with other non-sampled populations:

sampled_demes = ["YRI"]
sample_sizes = [40]

fs_yri = moments.Spectrum.from_demes(
 ooa_model, sampled_demes=sampled_demes, sample_sizes=sample_sizes
)

print("populations:", fs_yri.pop_ids)
print("sample sizes:", fs_yri.sample_sizes)
print("Tajima's D =", f"{fs_yri.Tajima_D():.3}")

populations: ['YRI']
sample sizes: [40]
Tajima's D = -0.338

Ancient samples

Or sample a combination of ancient and modern samples from a population:

sampled_demes = ["CEU", "CEU"]
sample_sizes = [10, 10]
sample size of 10 from present and 10 from 20,000 years ago
sample_times = [0, 20000]

fs_ancient = moments.Spectrum.from_demes(
 ooa_model,
 sampled_demes=sampled_demes,
 sample_sizes=sample_sizes,
 sample_times=sample_times,
)

print("populations:", fs.pop_ids)
print("sample sizes:", fs.sample_sizes)
print("FST(current, ancient) =", f"{fs.Fst():.3}")

populations: ['CEU', 'CEU_sampled_20000_0']
sample sizes: [10 10]
FST(current, ancient) = 0.0912

Note the population IDs, which are appended with “_sampled_{at_time}” where
“at_time” is the generation or year (depending on the time unit of the model),
as a float with an underscore replacing the decimal (here, 20000.0 years ago).

Alternative samples specification

By specifying sampled demes, sample sizes, and sample times, we have a lot
of flexibility over the sampling scheme. Samples can more simply be specified
as a dictionary, with one key per sampled population and values specifying
sample sizes. This dictionary is passed to the from_demes function using
the samples keyword, and it cannot be used in conjunction with sample times.
As such, samples are taken at the end time (most recent time) of each population.

samples = {"YRI": 10, "CEU": 20, "CHB": 30, "OOA": 10}
fs = moments.Spectrum.from_demes(ooa_model, samples=samples)

Here, samples from YRI, CEU, and CHB are taken from time zero, and the OOA
sample is taken from just before its split into the CEU and CHB branches.

Linkage disequilibrium

We can similarly compute LD statistics. Here, we compute
the set of multi-population Hill-Robertson statistics for the three
contemporary populations (YRI, CEU, and CHB), for three different
recombination rates, \(\rho=4Nr=0, 1, 2\).

import moments.LD

sampled_demes = ["YRI", "CEU", "CHB"]
y = moments.LD.LDstats.from_demes(
 ooa_model, sampled_demes=sampled_demes, rho=[0, 1, 2]
)

print("sampled populations:", y.pop_ids)

sampled populations: ['YRI', 'CEU', 'CHB']

Selection and dominance in Demes.SFS

Moments can compute the SFS under selection and dominance. The demes model
format currently lets us specify a single selection and dominance coefficient
for each population in the model, or we can set different selection parameters
in each populations.

The most simple scenario is to specify a single selection and dominance
parameter that applied to all populations in the demographic model. In this
case, we can pass gamma and/or h as scalar values to the function
moments.Spectrum.from_demes():

sampled_demes = ["YRI"]
sample_sizes = [40]
gamma = 10
h = 0.1

fs_yri_sel = moments.Spectrum.from_demes(
 ooa_model,
 sampled_demes=sampled_demes,
 sample_sizes=sample_sizes,
 gamma=gamma,
 h=h
)

We can compare the neutral and selected spectra:

compare to neutral SFS for YRI
fig = plt.figure()
ax = plt.subplot(111)
ax.semilogy(fs_yri, "-o", ms=6, lw=1, mfc="w", label="Neutral");
ax.semilogy(fs_yri_sel, "-o", ms=3, lw=1,
 label=f"Selected, $\gamma={gamma}$, $h={h}$");
ax.set_ylabel("Density");
ax.set_xlabel("Derived allele count");
ax.legend();

[image: ../_images/demes_7_0.png]

We can gain more fine-grained control over variable selection and dominance in
different populations by specifying gamma and h as dictionaries mapping
population names to the coefficients. There can be as many different
coefficient values as there are different demes in the demographic model.
However, if a population is missing from the dictionary, it is assigned the
default selection or dominance coefficient. In most cases the default values
are \(\gamma = 0\) and \(h=1/2\), but these can be changed by specifying
a _default value in the selection and dominance dictionaries.

For example:

g = demes.load("data/im-parsing-example.yaml")
print(g)

gamma = {"anc": -10, "deme0": -10, "deme1": 5}
h = {"anc": 0.3, "deme0": 0.3, "deme1": 0.7}

fs = moments.Spectrum.from_demes(
 g,
 sampled_demes=["deme0", "deme1"],
 sample_sizes=[20, 20],
 gamma=gamma,
 h=h
)

moments.Plotting.plot_single_2d_sfs(fs)

description: A simple isolation-with-migration model
time_units: generations
generation_time: 1
demes:
- name: anc
 epochs:
 - {end_time: 1500, start_size: 10000}
- name: deme0
 ancestors: [anc]
 epochs:
 - {end_time: 0, start_size: 2000}
- name: deme1
 ancestors: [anc]
 epochs:
 - {end_time: 0, start_size: 20000}
migrations:
- demes: [deme0, deme1]
 rate: 0.0001

[image: ../_images/demes_8_1.png]

In the case that a demographic model has many populations but only a small
subset have differing selection or dominance strengths, we can assign a default
value different from \(s=0\) or \(h=1/2\). This is done by including
a _default key in the dictionary (note the leading underscore, to minimize
the chance that the default key conflicts with a named population in the
demographic model). Taking the example above:

gamma = {"_default": -10, "deme1": 5}
h = {"_default": 0.3, "deme1": 0.7}

fs_defaults = moments.Spectrum.from_demes(
 g,
 sampled_demes=["deme0", "deme1"],
 sample_sizes=[20, 20],
 gamma=gamma,
 h=h
)

assert np.allclose(fs, fs_defaults)

Using Demes to infer demography

Above, we showed how to use moments and demes-based demographic models
to compute expectations for static demographic models. That is, given a fixed
demography we can compute expectations for the SFS or LD. We often want to
optimize the parameters of a given demographic model to fit observations from
data. The general idea is that we specify a parameterized model, compute the
expected SFS under that model and its likelihood given the data, and then
update the model parameters to improve the fit. Moments uses scipy’s
optimization functions [https://docs.scipy.org/doc/scipy/reference/optimize.html] to perform
optimization.

To run the inference, we need three items: 1) the data (SFS) to be fit, 2)
a parameterized demographic model, and 3) a way to tell the optimization
function which parameters to fit and any constraints on those parameters. We’ll
assume you already have a data SFS with stored pop_ids. For example, the
data could be a 3-dimensional SFS for the three sampled populations in the
Out-of-Africa demographic model above, so that data.pop_ids = ["YRI", "CEU",
"CHB"].

The second item is the demes-formatted demographic model, such as the model
written above. In this model, the parameter values are the demographic event
times, population sizes, and migration rates, and the YAML file specifies all
fixed parameters and initial guesses for the parameters to be fit.

The third item is a separate YAML-formatted file that tells the optimization
function the variable parameters that should be fit and any bounds and/or
inequality constraints on the parameter values.

The options file

All parameters to be fit must be included under parameters in the option
file. Any parameter that is not included here is assumed to be a fixed
parameter, and it will remain the value given in the Demes graph. moments
will read this YAML file into a dictionary using a YAML parser, so it needs to
be valid and properly formatted YAML code.

The only required field in the “options” YAML is parameters. For each
parameter to be fit, we must name that parameter, which can be any unique
string, and we need to specify which values in the Demes graph correspond to
that value (optionally, we can include a parameter description for our own
sake). For example, to fit the bottleneck size in the Out-of-Africa model, our
options file would look like:

parameters:
- name: N_B
 description: Bottleneck size for Eurasian populations
 values:
 - demes:
 OOA:
 epochs:
 0: start_size
 lower_bound: 100
 upper_bound: 100000

This specifies that the start size of the first (and only) epoch of the OOA
deme in the Demes graph should be fit. We have also specified that the fit for
this parameter should be bounded between 100 and 100,000.

The same parameter can affect multiple values in the Demes graph. For example,
the size of the African population in the Out-of-Africa model is applied to
both the AMH and the YRI demes. This simply requires adding additional keys in
the values entry:

parameters:
- name: N_A
 description: Expansion size
 values:
 - demes:
 AMH:
 epochs:
 0: start_size
 YRI:
 epochs:
 0: start_size
 lower_bound: 100
 upper_bound: 100000

Migration rates can be specified to be fit as well. Note that the index of the
migration is given, pointing to the migrations in the order they are specified
in the demes file.

parameters:
- name: m_Af_Eu
 description: Symmetric migration rate between Afr and Eur populations
 upper_bound: 1e-3
 values:
 - migrations:
 1: rate

Note here that we have specified the upper bound to be 1e-3 (the units of
the migration rate are parental migrant probabilities, typical in population
genetics models). For any parameter, we can set the lower bound and upper bound
as shown here. If they are not given, the lower bound defaults to 0 and the
upper bound defaults to infinity.

Finally, we can also specify constraints on parameters. For example, if some
event necessarily occurs before another, we should add that relationship to the
list of constraints.

parameters:
- name: TA
 description: Time before present of ancestral expansion
 values:
 - demes:
 ancestral:
 epochs:
 0: end_time
- name: TB
 description: Time of YRI-OOA split
 values:
 - demes:
 AMH:
 epochs:
 0: end_time
- name: TF
 description: Time of CEU-CHB split
 values:
 - demes:
 OOA:
 epochs:
 0: end_time
constraints:
- params: [TA, TB]
 constraint: greater_than
- params: [TB, TF]
 constraint: greater_than

This specifies each of the event timings in the OOA model to be fit, and the
constraints say that TA must be greater than TB, and TB must be
greater than TF.

The inference function

To run optimization using the Demes modeul, we call
moments.Demes.Inference.optimize. The first three required inputs to
optimize are the Demes input graph, the parameter options, and the data, in
that order.

Additional options can be passed to the optimization function using keyword
arguments in the moments.Demes.Inference.optimize function. These include:

	maxiter: Maximum number of iterations to run optimization. Defaults to
1,000.

	perturb: Defaults to 0 (no perturbation of initial parameters). If
greater than zero, it perturbs the initial parameters by up to
perturb-fold. So if perturb is 1, initial parameters are randomly
chosen from \([1/2\times p_0, 2\times p_0]\). Larger values result in
stronger perturbation of initial guesses.

	verbose: Defaults to 0. If greater than zero, it prints an update to the
specified output_stream (which defaults to sys.stdout) every
verbose iterations.

	uL: Defaults to None. If given, this is the product of the per-base
mutation rate and the length of the callable genome used to compile the data
SFS. If we don’t give this scaled mutation rate, we optimize with theta as
a free parameter. Otherwise, we optimize with theta given by \(\theta=4
\times N_e \times uL\), and \(N_e\) is taken to be the size of the
root/ancestral deme (for which the size can be a either be a fixed parameter
or a parameter to be fit!).

	log: Defaults to True. If True, optimize the log of the parameters.

	method: The optimization method to use, currently with the options “fmin”
(Nelder-Mead), “powell”, or “lbfgsb”. Defaults to “fmin”.

	fit_ancestral_misid: Defaults to False, and cannot be used with a folded
SFS. For an unfolded SFS, the ancestral state may be misidentified, resulting
in a distortion of the SFS. We can account for that distortion by fitting
a parameter that accounts for some fraction of mis-labeled ancestral states.

	misid_guess: Used with fit_ancestral_misid, as the initial ancestral
misidentification parameter guess. Defaults to 0.02.

	output_stream: Defaults to sys.stdout.

	output: Defaults to None, in which case the result is printed to the
output_stream. If given, write the optimized Demes graph in YAML format
to the given path/filename.

	overwrite: Defaults to False. If True, we overwrite any file with the
path/filename given by output.

Single-population inference example

To demonstrate, we’ll fit a simple single-population demographic model to the
synonymous variant SFS in the Mende (MSL) from the Thousand Genomes data. The
data for this population is stored in the docs/data directory. We previous
parsed all coding variation and used a mutation model to estimate
\(u\times L\).

We can either fold the frequency spectrum, which is useful when we do not know
the ancestral states of mutations. Alternatively, we can fit with the unfolded
spectrum, and if we suspect that some proportion of SNPs have their ancestral
state misidentified, we can additionally fit a parameter that corrects for this
uncertainty. We’ll take the second approach here, and fit the unfolded
spectrum.

import moments
import pickle

all_data = pickle.load(open("./data/msl_data.bp", "rb"))
data = all_data["spectra"]["syn"]
data.pop_ids = ["MSL"]
uL = all_data["rates"]["syn"]
print("scaled mutation rate (u_syn * L):", uL)

project down to a smaller sample size, for illustration purposes
data = data.project([30])

scaled mutation rate (u_syn * L): 0.14419746897690008

We’ll fit a demographic model that includes an ancient expansion and a more
recent exponential growth. This initial model is stored in the docs/data
directory as well.

The YAML specification of this model is

description: A single-population model to be fit to the MSL data. Initial guesses
 are given as parameters in the model.
time_units: years
generation_time: 29
demes:
- name: MSL
 epochs:
 - end_time: 350000
 start_size: 10000
 - end_time: 20000
 start_size: 25000
 - end_time: 0
 end_size: 60000

And we can specify that we want to fit the times of the size changes, and all
population sizes. (Note that if we did not have an estimate for the mutation
rate, we would not fit the ancestral size.)

parameters:
- name: T1
 description: Time before present of ancestral expansion
 values:
 - demes:
 MSL:
 epochs:
 0: end_time
- name: T2
 description: Time before present of start of exponential growth.
 values:
 - demes:
 MSL:
 epochs:
 1: end_time
- name: Ne
 description: Effective (ancestral/root) size
 values:
 - demes:
 MSL:
 epochs:
 0: start_size
- name: NA
 description: Ancestral expansion size
 values:
 - demes:
 MSL:
 epochs:
 1: start_size
- name: NF
 description: Final population size
 values:
 - demes:
 MSL:
 epochs:
 2: end_size
constraints:
- params: [T1, T2]
 constraint: greater_than

deme_graph = "./data/msl_initial_model.yaml"
options = "./data/msl_options.yaml"

And now we can run the inference:

output = "./data/msl_best_fit_model.yaml"
ret = moments.Demes.Inference.optimize(
 deme_graph,
 options,
 data,
 uL=uL,
 fit_ancestral_misid=True,
 misid_guess=0.01,
 method="lbfgsb",
 output=output,
 overwrite=True
)
param_names, opt_params, LL = ret
print("Log-likelihood:", -LL)
print("Best fit parameters")
for n, p in zip(param_names, opt_params):
 print(f"{n}\t{p:.3}")

Log-likelihood: -126.08823318048917
Best fit parameters
T1	4.38e+05
T2	2.2e+04
Ne	1.09e+04
NA	2.5e+04
NF	6.6e+04
p_misid	0.026

Printed above are the best fit parameters for this model, including the
ancestral misidentification rate for synonymous variants in the Mende sample.
Parameters in this fit are scaled by our estimate of the total mutation rate of
synonymous variants (uL), which allows us to infer the ancestral
\(N_e\). Below, we plot the results and then compute confidence intervals
for this fit.

Plotting the results

We can see how well our best fit model fits the data, using moments
plotting features:

fs = moments.Spectrum.from_demes(output, samples={"MSL": data.sample_sizes})
fs = moments.Misc.flip_ancestral_misid(fs, opt_params[-1])
moments.Plotting.plot_1d_comp_multinom(fs, data)

[image: ../_images/demes_13_0.png]

And we can illustrate the best fit model using
demesdraw [https://github.com/grahamgower/demesdraw]:

import demes, demesdraw
opt_model = demes.load(output)
demesdraw.size_history(opt_model, invert_x=True, log_time=True);

[image: ../_images/demes_14_0.png]

Computing confidence intervals

Using the output YAML from moments.Demes.Inference.optimize(), we compute
confidence intervals using moments.Demes.Inference.uncerts(). This function
takes the output Demes graph from the optimization, the same parameter options
file, and the same data used in inference. These need to be consistent between
the optimization and uncertainty computation. If we specified the mutation rate
or inferred an ancestral misidentification parameter, those must also be provided.

The additional options to uncerts() are

	bootstraps: Defaults to None, in which case we use the FIM approach.

	uL: The scaled mutation rate, if used in the optimization. (See above for
details.)

	log: Defaults to False. If True, we assume a log-normal distribution of
parameters. Returned values are then the standard deviations of the logs of
the parameter values, which can be interpreted as relative parameter
uncertainties.

	eps: The relative step size to use when numerically computing derivatives
to estimate the curvature of the likelihood function at the inferred best-fit
parameters.

	method: Defaults to “FIM”, which uses the Fisher information matrix. We
can also use the Godambe information matrix, which uses bootstrap replicates
to account for non-independence between linked SNPs. This uses methods
developed by Alec Coffman in Ryan Gutenkunst’s group, described in
[Coffman2016].

	fit_ancestral_misid: If the ancestral misid was fit, this should be set
to True.

	misid_fit: The fit misidentification parameter, if it was fit.

	output_stream: Defaults to sys.stdout.

In our example using the Mende data above, we’ll use the FIM method compute
confidence intervals:

std_err = moments.Demes.Inference.uncerts(
 output,
 options,
 data,
 uL=uL,
 fit_ancestral_misid=True,
 misid_fit=opt_params[-1],
)

print("95% CIs")
print("param\t\t2.5%\t\t97.5%")
for n, p, e in zip(param_names, opt_params, std_err):
 print(f"{n}\t{p - 1.96 * e:-12g}\t{p + 1.96 * e:-13g}")

95% CIs
param		2.5%		97.5%
T1	 378253	 497820
T2	 10528.9	 33528.2
Ne	 10387.3	 11316.9
NA	 23521.2	 26539.5
NF	 41670.7	 90313.3
p_misid	 0.0228469	 0.0291068

To compute standard errors that account for non-independence between SNPs, we
would use method="GIM" and include a list of bootstrap replicate spectra
that we pass to bootstraps.

Two-population inference and uncertainty example

Here, we’ll simulate a demographic model using msprime. In this example,
we’ll simulate many regions of varying length and mutation rates, from which we
compute uL and estimate confidences using the GIM method, which
requires bootstrapped datasets of the SFS and associated scaled mutation rates.

First, we’ll simulate data under this two-population model:

g = demes.load("./data/two-deme-example.yaml")
print(g)

time_units: generations
generation_time: 1
demes:
- name: anc
 epochs:
 - {end_time: 2000, start_size: 8500}
- name: A
 ancestors: [anc]
 epochs:
 - {end_time: 0, start_size: 700, end_size: 11000}
- name: B
 ancestors: [anc]
 epochs:
 - {end_time: 0, start_size: 17500}
migrations:
- demes: [A, B]
 rate: 0.0015

import msprime

demog = msprime.Demography.from_demes(g)

num_regions = 200
Lengths between 75 and 125 kb
Ls = np.random.randint(75000, 125000, 200)
Mutation rates between 1e-8 and 2e-8
us = 1e-8 + 1e-8 * np.random.rand(200)

Total mutation rate
uL = np.sum(us * Ls)

Simulate and store allele frequency data (summed and by region)
ns = [20, 20]
region_data = {}
data = moments.Spectrum(np.zeros((ns[0] + 1, ns[1] + 1)))
data.pop_ids = ["A", "B"]
sample_sets are required to get the SFS from the tree sequences
sample_sets = (range(20), range(20, 40))

for i, (u, L) in enumerate(zip(us, Ls)):
 ts = msprime.sim_ancestry(
 {"A": ns[0] // 2, "B": ns[1] // 2},
 demography=demog,
 recombination_rate=1e-8,
 sequence_length=L,
)
 ts = msprime.sim_mutations(ts, rate=u)
 SFS = ts.allele_frequency_spectrum(
 sample_sets=sample_sets, span_normalise=False, polarised=True)
 region_data[i] = {"uL": u * L, "SFS": SFS}
 data += SFS

print("Simulated data. FST =", data.Fst())

Simulated data. FST = 0.03488586466502664

With this simulated data, we can now re-infer the model, using the following
options:

parameters:
- name: T
 description: Ancestral split time
 values:
 - demes:
 anc:
 epochs:
 0: end_time
- name: Ne
 description: Ancestral effective population size
 values:
 - demes:
 anc:
 epochs:
 0: start_size
- name: NA0
 description: Initial population size of A
 values:
 - demes:
 A:
 epochs:
 0: start_size
- name: NA
 description: Final population size of A
 values:
 - demes:
 A:
 epochs:
 0: end_size
- name: NB
 description: B population size
 values:
 - demes:
 B:
 epochs:
 0: start_size
- name: M
 description: migration rate between A and B
 values:
 - migrations:
 0: rate
 upper_bound: 1

deme_graph = "./data/two-deme-example.yaml"
options = "./data/two-deme-example-options.yaml"
output = "./data/two-deme-example-best-fit.yaml"

ret = moments.Demes.Inference.optimize(
 deme_graph,
 options,
 data,
 uL=uL,
 perturb=1,
 output=output,
 overwrite=True
)

Printing the results of this inference run:

param_names, opt_params, LL = ret
print("Log-likelihood:", -LL)
print("Best fit parameters")
for n, p in zip(param_names, opt_params):
 print(f"{n}\t{p:.3}")

Log-likelihood: -1296.725088604149
Best fit parameters
T	1.52e+03
Ne	8.61e+03
NA0	5.74e+02
NA	2.05e+04
NB	1.46e+04
M	0.00115

To compute confidence intervals using the Godambe method, we need generate
bootstrap replicates of the data (and scaled mutation rate, if specified in the
optimization).

bootstraps = []
bootstraps_uL = []
for _ in range(len(region_data)):
 choices = np.random.choice(range(200), 200, replace=True)
 bootstraps.append(
 moments.Spectrum(sum([region_data[c]["SFS"] for c in choices])))
 bootstraps_uL.append(sum([region_data[c]["uL"] for c in choices]))

Computing the uncertainties using GIM requires passing the bootstrapped
data:

std_err = moments.Demes.Inference.uncerts(
 output,
 options,
 data,
 bootstraps=bootstraps,
 uL=uL,
 bootstraps_uL=bootstraps_uL,
 method="GIM",
)

print("Standard errors:")
print("param\t\topt\t\tstderr")
for n, p, e in zip(param_names, opt_params, std_err):
 print(f"{n}\t{p:-11g}\t{e:-14g}")

Standard errors:
param		opt		stderr
T	 1515.2	 183.786
Ne	 8607.87	 179.118
NA0	 573.705	 84.0684
NA	 20466	 5675.2
NB	 14610.3	 1994.22
M	 0.00115135	 0.000150782

References

[Gutenkunst2009]
Gutenkunst, Ryan N., et al. “Inferring the joint demographic history of
multiple populations from multidimensional SNP frequency data.”
PLoS genet 5.10 (2009): e1000695.

[Ragsdale2020]
Ragsdale, Aaron P., et al. “Lessons learned from bugs in models of human
history.” The American Journal of Human Genetics 107.4 (2020): 583-588.

Two-locus frequency spectrum

See Selection at two loci for introduction and examples to the Two-Locus extension.

API

The TLSpectrum class handles all manipulations of the two-locus frequency spectrum:

	
class moments.TwoLocus.TLSpectrum(data, mask=False, mask_infeasible=True, mask_fixed=False, data_folded=None, check_folding=True, dtype=<class 'float'>, copy=True, fill_value=nan, keep_mask=True, shrink=True)

	Represents a two locus frequency spectrum.

	Parameters:

	
	data (array) – The frequency spectrum data, which has shape
(n+1)-by-(n+1)-by-(n+1) where n is the sample size.

	mask (array) – An optional array of the same size as data. ‘True’ entries
in this array are masked in the TLSpectrum.

	mask_infeasible (bool) – If True, mask all bins for frequencies that cannot
occur, e.g. i + j > n. Defaults to True.

	mask_fixed (bool) – If True, mask the fixed bins. Defaults to True.

	data_folded (bool) – If True, it is assumed that the input data is folded
for the major and minor derived alleles

	check_folding (bool) – If True and data_folded=True, the data and
mask will be checked to ensure they are consistent.

	
D(proj=True, nA=None, nB=None)

	Return the expectation of \(D\) from the spectrum.

	Parameters:

	
	proj – If True, use the unbiased estimator from downsampling. If False,
use naive maximum likelihood estimates for frequency.

	nA – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the left locus.

	nB – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the right locus.

	
D2(proj=True, nA=None, nB=None)

	Return the expectation of \(D^2\) from the spectrum.

	Parameters:

	
	proj – If True, use the unbiased estimator from downsampling. If False,
use naive maximum likelihood estimates for frequency.

	nA – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the left locus.

	nB – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the right locus.

	
Dz(proj=True, nA=None, nB=None)

	Compute the expectation of \(Dz = D(1-2p)(1-2q)\) from the spectrum.

	Parameters:

	
	proj – If True, use the unbiased estimator from downsampling. If False,
use naive maximum likelihood estimates for frequency.

	nA – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the left locus.

	nB – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the right locus.

	
S(nA=None, nB=None)

	Return the sum of probabilities over all variable two-locus entries
in the spectrum.

	
ancestral_misid(p)

	Return a new SFS with a given ancestral misidentification, p.

	Parameters:

	p – The rate of ancestral state misidentification.

	
fold()

	Fold the two-locus spectrum by minor allele frequencies.

	
static from_file(fid, mask_infeasible=True, return_comments=False)

	Read frequency spectrum from file.

	Parameters:

	
	fid (str) – String with file name to read from or an open file object.

	mask_infeasible (bool) – If True, mask the infeasible entries in the
two locus spectrum.

	return_comments (bool) – If true, the return value is (fs, comments), where
comments is a list of strings containing the comments from the file.

	
integrate(nu, tf, dt=0.01, rho=None, gamma=None, sel_params=None, sel_params_general=None, theta=1.0, finite_genome=False, u=None, v=None, alternate_fg=None, clustered_mutations=False)

	Simulate the two-locus haplotype frequency spectrum forward in time.
This integration scheme takes advantage of scipy’s sparse methods.

When using the reversible mutation model (with finite_genome = True),
we are limited to selection at only one locus (the left locus), and
selection is additive. When using the default ISM, additive selection
is allowed at both loci, and we use sel_params, which specifies [sAB,
sA, and sB] in that order. Note that while this selection model is
additive within loci, it allows for epistasis between loci if sAB != sA
+ sB.

	Parameters:

	
	nu – Population effective size as positive value or callable function.

	tf (float) – The integration time in genetics units.

	dt_fac (float) – The time step for integration.

	rho (float) – The population-size scaled recombination rate 4*Ne*r.

	gamma (float) – The population-size scaled selection coefficient 2*Ne*s.

	sel_params (list) – A list of selection parameters. See docstrings in
Numerics. Selection parameters will be deprecated when we clean up the
numerics and integration.

	sel_params_general (list) – To be filled. ## TODO!!

	theta (float) – Population size scale mutation parameter.

	finite_genome (bool) – Defaults to False, in which case we use the
infinite sites model. Otherwise, we use a reversible mutation model, and
must specify u and v.

	u (float) – The mutation rate at the left locus in the finite genome model.

	v (float) – The mutation rate at the right locus in the finite genome
model.

	alternate_fg (bool) – If True, use the alternative finite genome model.
This parameter will be deprecated when we clean up the numerics and
integration.

	
left()

	The marginal allele frequency spectrum at the left locus.

	
mask_fixed()

	Mask all infeasible entries, as well as any where both sites are not
segregating.

	
mask_infeasible()

	Mask any infeasible entries.

	
pi2(proj=True, nA=None, nB=None)

	Return the expectation of \(\pi_2 = p(1-p)q(1-q)\) from the spectrum.

	Parameters:

	
	proj – If True, use the unbiased estimator from downsampling. If False,
use naive maximum likelihood estimates for frequency.

	nA – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the left locus.

	nB – If None, the average is computed over all frequencies. If given,
condition on the given allele count for the right locus.

	
project(ns, finite_genome=False, cache=True)

	Project to smaller sample size.

param int ns: Sample size for new spectrum.
param bool finite_genome: If we also track proportions in fixed bins.

	
right()

	The marginal AFS at the right locus.

	
to_file(fid, precision=16, comment_lines=[], foldmaskinfo=True)

	Write frequency spectrum to file.

	Parameters:

	
	fid (str) – String with file name to write to or an open file object.

	precision (int) – Precision with which to write out entries of the SFS.
(They are formated via %.<p>g, where <p> is the precision.)

	comment_lines (list) – List of strings to be used as comment lines in
the header of the output file.

	foldmaskinfo (bool) – If False, folding and mask and population label
information will not be saved.

	
unfold()

	Remove folding from the spectrum.

The Demographics module contains some standard demographic models. This is a good
place to look for some inspiration to create your own two-locus models as well.

	
moments.TwoLocus.Demographics.bottlegrowth(params, ns, rho=None, theta=1.0, gamma=None, sel_params=None)

	A bottleneck followed by exponential growth. The population changes size to nuB
T generations ago, and then has exponential size change to final size nuF. Time is
in units of 2Ne generations, and sizes are relative to the ancestral Ne.

	Parameters:

	
	params – Given as [nuB, nuF, T].

	ns – The sample size.

	rho – The population size scaled selection coefficient, 4*Ne*r.

	theta – The mutation rate at each locus, typically left as 1.

	gamma – Only used for additive selection at the A/a locus.

	sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so
that sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no
epistasis.

	
moments.TwoLocus.Demographics.equilibrium(ns, rho=None, theta=1.0, gamma=None, sel_params=None, sel_params_general=None, cache=False)

	Compute or load the equilibrium two locus frequency spectrum. If the cached spectrum
does not exist, create the equilibrium spectrum and cache in the cache path.

	Parameters:

	
	ns – The sample size.

	rho – The population size scaled selection coefficient, 4*Ne*r.

	theta – The mutation rate at each locus, typically left as 1.

	gamma – Only used for additive selection at the A/a locus.

	sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so
that sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no
epistasis.

	sel_params_general – General selection parameters for diploids. In the order
(s_AB_AB, s_AB_Ab, s_AB_aB, s_AB_ab, s_Ab_Ab, s_Ab_aB, s_Ab_ab, s_aB_aB, s_aB_ab)

	cache – If True, save the frequency spectrum in the cache for future use. If
False, don’t save the spectrum.

	
moments.TwoLocus.Demographics.growth(params, ns, rho=None, theta=1.0, gamma=None, sel_params=None)

	An expnential growth model, that begins growth at time T ago, in units of 2Ne
generations. The final size is given by nu, which is the relative size to the
ancestral Ne.

	Parameters:

	
	params – Given as [nu, T].

	ns – The sample size.

	rho – The population size scaled selection coefficient, 4*Ne*r.

	theta – The mutation rate at each locus, typically left as 1.

	gamma – Only used for additive selection at the A/a locus.

	sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so
that sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no
epistasis.

	
moments.TwoLocus.Demographics.set_cache_path(path='~/.moments/TwoLocus_cache')

	Set directory in which demographic equilibrium phi spectra will be cached.

The collection of cached spectra can get large, so it may be helpful to
store them outside the user’s home directory.

	
moments.TwoLocus.Demographics.three_epoch(params, ns, rho=None, theta=1.0, gamma=None, sel_params=None)

	A three-epoch model, with relative size changes nu1 that lasts for time T1, followed
by a relative size change to nu2 that last for time T2. Times are in units of 2Ne
generations, and sizes are relative to the ancestral Ne.

	Parameters:

	
	params – Given as [nu1, nu2, T1, T2].

	ns – The sample size.

	rho – The population size scaled selection coefficient, 4*Ne*r.

	theta – The mutation rate at each locus, typically left as 1.

	gamma – Only used for additive selection at the A/a locus.

	sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so
that sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no
epistasis.

	
moments.TwoLocus.Demographics.two_epoch(params, ns, rho=None, theta=1.0, gamma=None, sel_params=None)

	A two-epoch model, with relative size change nu, time T in the past. T is given
in units of 2Ne generations. Note that a relative size of 1 implies no size change.

	Parameters:

	
	params – Given as [nu, T].

	ns – The sample size.

	rho – The population size scaled selection coefficient, 4*Ne*r.

	theta – The mutation rate at each locus, typically left as 1.

	gamma – Only used for additive selection at the A/a locus.

	sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so
that sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no
epistasis.

Triallele frequency spectrum

API

	
class moments.Triallele.TriSpectrum(data, mask=False, finite_genome=False, mask_infeasible=True, mask_fixed=True, data_folded_major=None, check_folding_major=True, data_folded_ancestral=None, check_folding_ancestral=True, dtype=<class 'float'>, copy=True, fill_value=nan, keep_mask=True, shrink=True)

	Represents a triallelic frequency spectrum.

The triallelic spectrum is represented as a square numpy masked array in which
the (i, j)-th element stores the count or density of loci in which there are i
copies of the first derived allele and j copies of the second derived allele.

	Parameters:

	
	data (array) – The frequency spectrum data of size (n+1)-by-(n+1) where n is
the sample size.

	mask (array) – An optional array of the same size as data. ‘True’ entries in
this array are masked in the TriSpectrum. These represent missing data
categories, or invalid entries in the array

	mask_infeasible (bool) – If True, mask all bins for frequencies that cannot
occur, e.g. i + j > n. Defaults to True.

	mask_fixed (bool) – If True, mask the fixed bins. Defaults to True.

	data_folded_major (bool) – If True, it is assumed that the input data is folded
for the major and minor derived alleles.

	data_folded_ancestral (bool) – If True, it is assumed that the input data is
folded to account for uncertainty in the ancestral state. Note
that if True, data_folded_major must also be True.

	check_folding_major (bool) – If True and data_folded_ancestral=True, the data
and mask will be checked to ensure they are consistent.

	check_folding_ancestral (bool) – If True and data_folded_ancestral=True, the
data and mask will be checked to ensure they are consistent.

	
S()

	Number of sites in the unmasked spectrum.

	
fold_ancestral()

	Fold the spectrum based on the ancestral state

	
fold_major()

	Fold the spectrum based on the major allele(s).

	
static from_file(fid, mask_infeasible=True, return_comments=False)

	Read frequency spectrum from file.

See to_file method for details on the file format.

	Parameters:

	
	fid (str) – String with file name to read from or an open file object.

	mask_infeasible (bool) – If True, mask the infeasible entries in the
triallelic spectrum.

	return_comments (bool) – If true, the return value is (fs, comments), where
comments is a list of strings containing the comments from the file.

	
integrate(nu, tf, dt=0.001, gammas=None, theta=1.0)

	Method to simulate the triallelic fs forward in time.
This integration scheme takes advantage of scipy’s sparse methods.

	Parameters:

	
	nu – The population effective size as positive value or callable function.

	tf (float) – The integration time in genetics units.

	dt_fac (float) – time step for integration

	gammas (list) – Population size scaled selection coefficients
[sAA, sA0, sBB, sB0, sAB]. Here, 0 represents that ancestral allele, so we
can implement dominance by picking the relationship between, e.g., sAA, sA0,
sAB, and sA0.

	theta (float) – Population size scale mutation parameter, assuming equal
mutation rates to both derived alleles.

	
log()

	Return the natural logarithm of the entries of the frequency spectrum.

Only necessary because numpy.ma.log now fails to propagate extra
attributes after numpy 1.10.

	
mask_fixed()

	Mask entries that are not triallelic.

	
mask_infeasible()

	Mask any infeasible entries.

	
pi()

	Estimated expected number of pairwise differences between two samples
from the population at loci that are triallelic

	
project(ns, finite_genome=False)

	Project to smaller sample size.

	Parameters:

	ns (int) – Sample size for new spectrum.

	
to_file(fid, precision=16, comment_lines=[], foldmaskinfo=True)

	Write frequency spectrum to file.

The file format is:

	# Any number of comment lines beginning with a ‘#’

	A single line containing the sample size.
On the same line, the string ‘folded_major’ or ‘unfolded_major’
denoting the folding status of the array.
And on the same line, the string ‘folded_ancestral’ or ‘unfolded_ancestral’
denoting the folding status of the array.

	A single line giving the array elements. The order of elements is
e.g.: fs[0, 0] fs[0, 1] fs[0, 2] … fs[1, 0] fs[1, 1] …

	A single line giving the elements of the mask in the same order as
the data line. ‘1’ indicates masked, ‘0’ indicates unmasked.

	Parameters:

	
	fid (str) – String with file name to write to or an open file object.

	precision (int) – Precision with which to write out entries of the SFS.
(They are formated via %.<p>g, where <p> is the precision.)

	comment_lines (list) – List of strings to be used as comment lines in
the header of the output file.

	foldmaskinfo (bool) – If False, folding and mask and population label
information will not be saved.

	
unfold()

	Completely unfold the spectrum.

Returns a new TriSpectrum.

Demography and genetic diversity

Todo

This module has not been completed.

Intro - intuition about how demography is expected to affect summary statistics
helps in hypothesizing historical scenarios to explain observed patterns of genetic
diversity, or trouble-shooting poor fits of models to data. It’s also important
to understand how demographic parameters can be confounded and different evolutionary
scenarios can give rise to similar patterns of genetic diversity.

Measures of genetic diversity

Many of the common single-site diversity statistics we are familiar with in population
genetics are summaries of the SFS.

For single populations, diversity within a
population is very often reported as the average heterozygosity (typically denoted
\(\pi\) or \(H\)): the probability that two genome copies (i.e. samples) differ
in state at a given locus. Suppose our SFS stores the distribution of allele frequencies
over \(L\) loci for \(n\) samples. Then the expected or average
\(\pi\) can be found by summing across allele frequency bins in the SFS and
computing the probability that two randomly drawn copies carry different alleles for
the given allele frequency:

\[\mathbf{E}[\pi] = \frac{1}{L} \sum_{i=1}^{n-1} 2\frac{i(n-i)}{n(n-1)} \text{SFS}(i)\]

Under the standard neutral model with steady-state demography, diversity is expected
to be equal to the scaled mutation rate:

import moments

theta = 0.001 # the per-base scaled mutation rate, 4*Ne*u
n = 30 # the haploid sample size
fs = theta * moments.Demographics1D.snm([n])

print("Theta:", theta)
print("Diversity:", f"{fs.pi():0.4f}")

Theta: 0.001
Diversity: 0.0010

Single-population demography

Store values every x generations after instantaneouls double of size:

Ne = 1000

singletons = []
doubletons = []
tripletons = []
diversity = []

fs = moments.Demographics1D.snm([20])
singletons.append(fs[1])
doubletons.append(fs[2])
tripletons.append(fs[3])
diversity.append(fs.pi())

for gens in range(Ne):
 fs.integrate([2], 4/2/Ne)
 singletons.append(fs[1])
 doubletons.append(fs[2])
 tripletons.append(fs[3])
 diversity.append(fs.pi())

import matplotlib.pylab as plt
fig = plt.figure(1)
ax = plt.subplot(1, 1, 1)
tt = [4 * t for t in range(Ne + 1)]
ax.plot(tt, singletons / singletons[0], label="Singletons")
ax.plot(tt, doubletons / doubletons[0], label="Doubletons")
ax.plot(tt, tripletons / tripletons[0], label="Tripletons")
ax.plot(tt, diversity / diversity[0], label="Diversity (pi)")
ax.set_xlabel("Generations after expansion")
ax.legend(frameon=False)

<matplotlib.legend.Legend at 0x7f9fca9ac450>

[image: ../_images/diversity_2_1.png]

	Tajima’s D and pi over time with size changes

	dynamics of allele frequency classes with size changes

Multiple populations

	Comparison to some classical result in an IM model?

	m-T confounding in heatmap of Fst

	Fst with small sizes vs large divergence

	pi over time in OOA model

DFE inference

By Aaron Ragsdale, November 2020.

The distribution of fitness effects (DFE) for new mutations describes is a fundamental
parameter in evolutionary biology - it determines the fixation probability of new
functional mutations, the strength of background selection, and the genetic architecture
of traits and disease.

Very roughly, most new mutations across the genome are effectively neutral or
deleterious, with a small fraction being beneficial (e.g. [Keightley], [Boyko]).
In coding regions, the average selection coefficient for a new mutation depends on
its functional effect: we typically assume synonymous (or silent) mutations are
effectively neutral (though this may be a tenuous assumption!), missense (or
nonsynonymous) mutations are more deleterious on average, and loss-of-function
(or nonsense) mutations are often very damaging. We can learn about the DFE in
each of these categories by studying the distributions allele frequencies for variants
in each class.

Data

Let’s first look at the data we’ll be working with. Here, I used single-population data
from the Mende from Sierre Leone (MSL) from the 1000 Genomes Project [1000G]. In
Fig. 2, I plotted the unfolded SFS for three classes of mutations
in coding regions genome-wide. We can see that the missense variants are skewed
to lower frequencies than synonymous variants, on average, and loss-of-function
(LOF) variants are skewed to even lower frequencies.

It can be difficult to judge the skew of the SFS based on SFS counts, since the total
mutational target for each mutation class differs (Table 1). In the
bottom panel of the plot, we can see that of all LOF variants observed in the MSL
population, roughly 50% of them are singletons; compare that to synonymous variants,
of which less than 30% are singletons.

[image: ../_images/msl_spectra.png]

Fig. 2 Synonymous, missense, and loss-of-function SFS from the 1000 Genomes Project
across all autosomal genes. Top: counts in each frequency bin. Bottom: proportions
in each frequency bin.

Mutation rates

The overall scaling of the SFS from mutation classes is also informative, because
strongly deleterious or lethal mutations are quickly lost from the population and
so are often unseen. Thus, seeing fewer mutations that expected in a given class
tells us that some fraction of those mutations are highly deleterious. To make such
an inference about the strongly damaging tail fo the DFE we need to know the
total mutation rates for each class of mutations.

Using the mutation model from [Karczewski], I summed across all possible mutations in
genes genome-wide, their mutational probability, and their functional consequences to
get the total mutation rate (u*L - here, L is roughly 36 Mb of annotated coding
regions) for each of the three mutation classes shown in Fig. 2:

Table 1 Total mutation rates for classes of mutations in coding regions.

	Mutation class

	Total mutation rate

	Synonymous variants

	0.1442

	Missense variants

	0.3426

	Loss-of-function variants

	0.0256

We can see here that the mutational target for nonsynonymous variants is about 2.37
times larger than for synonymous variants. Still, we see far more segregating
synonymous mutations than nonsynonymous mutations:

import moments
import pickle
import numpy as np

note that these frequency spectra are saved in the docs directory of the moments
repository: https://bitbucket.org/simongravel/moments/src/master/docs/data/
data = pickle.load(open("./data/msl_data.bp", "rb"))

fs_syn = data["spectra"]["syn"]
fs_mis = data["spectra"]["mis"]
fs_lof = data["spectra"]["lof"]

u_syn = data["rates"]["syn"]
u_mis = data["rates"]["mis"]
u_lof = data["rates"]["lof"]

print("Diversity:")
print(f"synonymous:\t{fs_syn.pi():.2f}")
print(f"missense:\t{fs_mis.pi():.2f}")
print(f"loss of func:\t{fs_lof.pi():.2f}")

print()
print("Diversity scaled by total mutation rate:")
print(f"synonymous:\t{fs_syn.pi() / u_syn:.2f}")
print(f"missense:\t{fs_mis.pi() / u_mis:.2f}")
print(f"loss of func:\t{fs_lof.pi() / u_lof:.2f}")

Diversity:
synonymous:	8452.01
missense:	6991.16
loss of func:	95.16

Diversity scaled by total mutation rate:
synonymous:	58614.15
missense:	20408.81
loss of func:	3718.19

Controlling for demography

Demography (in this case, the population size history) affects mutation frequency
trajectories and the SFS, so we need to control for non-steady-state demography in
some way. Using our assumption that synonymous variants are effectively neutral, we
first fit a demographic model to synonymous variants, and then with that inferred
demography we fit the DFE to selected variants.

We could pick any plausible demographic model to fit. The main consideration is to
choose a demographic model that can adequately fit the data, but is not so
over-parameterized to be overfitting to the noise in the SFS. In Fig. 2,
we can also see the telltale sign of ancestral misidentification by the uptick
of high-frequency variants. In addition to the demographic parameters (sizes and
epoch times), we wil also fit a parameter to account for the probability of
mis-polarizing a variant.

Let’s fit a model with three epochs: the ancestral size, an ancient expansion, and a
recent exponential growth. In fitting the demography, we keep multinom=True, the
default, as we don’t have an estimate for \(N_e\).

def model_func(params, ns):
 nuA, nuF, TA, TF, p_misid = params
 fs = moments.Demographics1D.snm(ns)
 fs.integrate([nuA], TA)
 nu_func = lambda t: [nuA * np.exp(np.log(nuF / nuA) * t / TF)]
 fs.integrate(nu_func, TF)
 fs = (1 - p_misid) * fs + p_misid * fs[::-1]
 return fs

p_guess = [2.0, 10.0, 0.3, 0.01, 0.02]
lower_bound = [1e-3, 1e-3, 1e-3, 1e-3, 1e-3]
upper_bound = [10, 100, 1, 1, 0.999]

opt_params = moments.Inference.optimize_log_fmin(
 p_guess, fs_syn, model_func,
 lower_bound=lower_bound, upper_bound=upper_bound)

model = model_func(opt_params, fs_syn.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, fs_syn)
Ne = opt_theta / u_syn / 4

print("optimal demog. parameters:", opt_params[:-1])
print("anc misid:", opt_params[-1])
print("inferred Ne:", f"{Ne:.2f}")

optimal demog. parameters: [2.21531687 5.29769918 0.55450117 0.04088086]
anc misid: 0.01975812
inferred Ne: 11372.91
Log-likelihood: -689.7426549382283

Note that I initialized the model parameters fairly close to the optimal parameters.
In practice, you would want to test a wide range of initial conditions to make sure
our inference didn’t get stuck at a local minimum.

We can see how well our model fit the synonymous data:

moments.Plotting.plot_1d_comp_multinom(model, fs_syn, residual="linear")

Demographic model fit to the MSL synonymous data. Top: model (red) and synonymous
data (blue) SFS. Bottom: residuals, plotted as ``(model - data) / sqrt(data)``.

[image: ../_images/dfe_1_2_0.png]

That’s a pretty good fit! Now that we have our inferred demographic model, let’s
move on to inferring the DFEs for missense and LOF variants.

Inferring the DFE

Now that we have a plausible demographic model, we can move to the selected SFS.
Not every new missense mutation or every new LOF mutation will have the same
fitness effect, so we aim to learn the distribution of selection coefficients
of new mutations. Here, we are going to assume an additive model of selection -
that is, heterozygotes have fitness \(1+s\) while homozygotes for the
derived allele have fitness \(1+2s\). We’re also only going to focus
on the deleterious DFE - we assume beneficial mutations are very rare, and we’ll
ignore them.

The general strategy is to pick some distribution (here, we’ll choose a
gamma distribution [https://www.wikipedia.org/wiki/Gamma_distribution],
though other distributions such a log-normal or point masses could be used),
and then infer the parameters of that distribution. To do so, we compute a large
number of SFS spanning the range of the distribution of possible \(\gamma=2N_es\)
values, and then combine them based on weights given by the parameterized DFE
(for example, [Ragsdale], [Kim]).

Because the underlying demographic model does not change, we can cache the SFS
for each value of \(\gamma\). Then in optimizing the DFE parameters, we just
have a weighted sum across this cache, and this makes the actual DFE inference
very rapid.

Caching SFS

We cache the SFS for the inferred demography and a grid of selection coefficients
ranging from neutral to strongly deleterious. For the SFS with very deleterious
selection coefficients, the computation is only stable with large sample sizes.
Thus, after each computation for a given selection coefficient, we check to make
sure that the SFS does not have large negative oscillations and did not fail
to converge. If the computation failed, we doube the sample size and recompute
the SFS, repeating until we have a sample size large enough to stably compute
the SFS. That SFS is then projected to the needed sample size and chached.

def selection_spectrum(gamma, h=0.5):
 rerun = True
 ns_sim = 100
 while rerun:
 ns_sim = 2 * ns_sim
 fs = moments.LinearSystem_1D.steady_state_1D(ns_sim, gamma=gamma, h=h)
 fs = moments.Spectrum(fs)
 fs.integrate([opt_params[0]], opt_params[2], gamma=gamma, h=h)
 nu_func = lambda t: [opt_params[0] * np.exp(
 np.log(opt_params[1] / opt_params[0]) * t / opt_params[3])]
 fs.integrate(nu_func, opt_params[3], gamma=gamma, h=h)
 if abs(np.max(fs)) > 10 or np.any(np.isnan(fs)):
 # large gamma-values can require large sample sizes for stability
 rerun = True
 else:
 rerun = False
 fs = fs.project(fs_syn.sample_sizes)
 return fs

spectrum_cache = {}
spectrum_cache[0] = selection_spectrum(0)

gammas = np.logspace(-4, 3, 61)
for gamma in gammas:
 spectrum_cache[gamma] = selection_spectrum(-gamma)

Optimization of the DFE

We’ll fit a gamma distribution for the DFE, which has parameters alpha and beta.
First, we set up the expected thetas for both missense and LOF mutations, as well
as the function that weights the cached spectra based on the gamma distribution.
The parameters we fit are then alpha and beta (or shape and scale) of the gamma
distribution and the misidentification rate.

import scipy.stats
theta_mis = opt_theta * u_mis / u_syn
theta_lof = opt_theta * u_lof / u_syn

dxs = ((gammas - np.concatenate(([gammas[0]], gammas))[:-1]) / 2
 + (np.concatenate((gammas, [gammas[-1]]))[1:] - gammas) / 2)

def dfe_func(params, ns, theta=1):
 alpha, beta, p_misid = params
 fs = spectrum_cache[0] * scipy.stats.gamma.cdf(gammas[0], alpha, scale=beta)
 weights = scipy.stats.gamma.pdf(gammas, alpha, scale=beta)
 for gamma, dx, w in zip(gammas, dxs, weights):
 fs += spectrum_cache[gamma] * dx * w
 fs = theta * fs
 return (1 - p_misid) * fs + p_misid * fs[::-1]

def model_func_missense(params, ns):
 return dfe_func(params, ns, theta=theta_mis)

def model_func_lof(params, ns):
 return dfe_func(params, ns, theta=theta_lof)

Fit missense variants:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_mis = moments.Inference.optimize_log_fmin(
 p_guess, fs_mis, model_func_missense,
 lower_bound=lower_bound, upper_bound=upper_bound,
 multinom=False)

model_mis = model_func_missense(opt_params_mis, fs_mis.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_mis[0]:.4f}")
print("scale:", f"{opt_params_mis[1]:.1f}")
print("anc misid:", f"{opt_params_mis[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_mis, fs_mis))

optimal parameters:
shape: 0.1596
scale: 2332.3
anc misid: 0.0137
Log-likelihood: -695.1273435550006

To visualize the fit of our inferred model to the missense data:

moments.Plotting.plot_1d_comp_Poisson(model_mis, fs_mis, residual="linear")

Gamma-DFE fit to the MSL missense data.

[image: ../_images/dfe_1_6_0.png]

Next, we fit LOF variants in exactly the same way:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_lof = moments.Inference.optimize_log_fmin(
 p_guess, fs_lof, model_func_lof,
 lower_bound=lower_bound, upper_bound=upper_bound,
 multinom=False)

model_lof = model_func_lof(opt_params_lof, fs_lof.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_lof[0]:.4f}")
print("scale:", f"{opt_params_lof[1]:.1f}")
print("anc misid:", f"{opt_params_lof[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_lof, fs_lof))

optimal parameters:
shape: 0.3589
scale: 7830.5
anc misid: 0.0021
Log-likelihood: -232.59479649815248

optimal parameters:
shape: 0.3589
scale: 7830.5
anc misid: 0.0021
Log-likelihood: -232.5947964992979

And again we visualize the fit of our inferred model to the LOF data:

moments.Plotting.plot_1d_comp_Poisson(model_lof, fs_lof, residual="linear")

Gamma-DFE fit to the MSL loss-of-function data.

[image: ../_images/dfe_1_9_0.png]

Using the inferred \(N_e\) from fitting the demographic model to the synonymous
data and the function scipy.stats.gamma.cdf(), we can compute the proportions
of new missense and LOF mutations across bins of selection coefficients:

Table 2 The DFE for missense and loss-of-function variants binned by selection
coefficients, ranging from neutral or nearly neutral (\(|s| < 10^{-5}\)) to
strongly deleterious and lethal (\(|s|\geq10^{-2}\)).

	Class

	\(| s | < 10^{-5}\)

	\(10^{-5} \leq | s | < 10^{-4}\)

	\(10^{-4} \leq | s | < 10^{-3}\)

	\(10^{-3} \leq | s | < 10^{-2}\)

	\(| s | \geq 10^{-2}\)

	Missense

	0.246

	0.109

	0.157

	0.219

	0.268

	LOF

	0.026

	0.034

	0.078

	0.175

	0.687

Here, we clearly see that LOF variants are inferred to be very deleterious,
with roughly 2/3 of all new LOF mutations having a selection coefficient larger
that \(10^{-2}\).

Sensitivity to the demographic model

Here, we’ll fit a simpler models to the synonymous variants, and rerun the same DFE
inference to check if the results are robust. We’ll first fit a two-epoch model (again
accounting for ancestral misidentification), and then simply use a standard neutral
model without size changes.

Throughout this section, we again print log-likelihoods of the fits, which can
be compared to the fits made with the more complex demographic model above.

def model_func(params, ns):
 nu, T, p_misid = params
 fs = moments.Demographics1D.two_epoch([nu, T], ns)
 fs = (1 - p_misid) * fs + p_misid * fs[::-1]
 return fs

p_guess = [2, .3, 0.02]
lower_bound = [1e-3, 1e-3, 1e-3]
upper_bound = [10, 1, 0.999]

opt_params = moments.Inference.optimize_log_fmin(
 p_guess, fs_syn, model_func,
 lower_bound=lower_bound, upper_bound=upper_bound)

model = model_func(opt_params, fs_syn.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, fs_syn)
Ne = opt_theta / u_syn / 4

print("optimal demog. parameters:", opt_params[:-1])
print("anc misid:", opt_params[-1])
print("inferred Ne:", f"{Ne:.2f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model, fs_syn))
compare log-likelihood to the more complex demographic model above

moments.Plotting.plot_1d_comp_multinom(model, fs_syn, residual="linear")

optimal demog. parameters: [2.55501781 0.31744642]
anc misid: 0.01842965
inferred Ne: 12518.37
Log-likelihood: -908.8631695023389

[image: ../_images/dfe_1_10_1.png]

Now we cache the selection-SFS for this demography and refit the DFE to the missense
variants:

def selection_spectrum(gamma):
 rerun = True
 ns_sim = 100
 while rerun:
 ns_sim = 2 * ns_sim
 fs = moments.LinearSystem_1D.steady_state_1D(ns_sim, gamma=gamma)
 fs = moments.Spectrum(fs)
 fs.integrate([opt_params[0]], opt_params[1], gamma=gamma)
 if abs(np.max(fs)) > 10 or np.any(np.isnan(fs)):
 # large gamma-values can require large sample sizes for stability
 rerun = True
 else:
 rerun = False
 fs = fs.project(fs_syn.sample_sizes)
 return fs

spectrum_cache = {}
spectrum_cache[0] = selection_spectrum(0)

gammas = np.logspace(-4, 3, 61)
for gamma in gammas:
 spectrum_cache[gamma] = selection_spectrum(-gamma)

Set up the mutation rates and DFE functions:

theta_mis = opt_theta * u_mis / u_syn
theta_lof = opt_theta * u_lof / u_syn

dxs = ((gammas - np.concatenate(([gammas[0]], gammas))[:-1]) / 2
 + (np.concatenate((gammas, [gammas[-1]]))[1:] - gammas) / 2)

def dfe_func(params, ns, theta=1):
 alpha, beta, p_misid = params
 fs = spectrum_cache[0] * scipy.stats.gamma.cdf(gammas[0], alpha, scale=beta)
 weights = scipy.stats.gamma.pdf(gammas, alpha, scale=beta)
 for gamma, dx, w in zip(gammas, dxs, weights):
 fs += spectrum_cache[gamma] * dx * w
 fs = theta * fs
 return (1 - p_misid) * fs + p_misid * fs[::-1]

def model_func_missense(params, ns):
 return dfe_func(params, ns, theta=theta_mis)

def model_func_lof(params, ns):
 return dfe_func(params, ns, theta=theta_lof)

Fit the missense data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_mis = moments.Inference.optimize_log_fmin(
 p_guess, fs_mis, model_func_missense,
 lower_bound=lower_bound, upper_bound=upper_bound,
 multinom=False)

model_mis = model_func_missense(opt_params_mis, fs_mis.sample_sizes)
print("optimal parameters (missense):")
print("shape:", f"{opt_params_mis[0]:.4f}")
print("scale:", f"{opt_params_mis[1]:.1f}")
print("anc misid:", f"{opt_params_mis[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_mis, fs_mis))

moments.Plotting.plot_1d_comp_Poisson(model_mis, fs_mis, residual="linear")

optimal parameters (missense):
shape: 0.1830
scale: 733.6
anc misid: 0.0134
Log-likelihood: -999.0833946058101

[image: ../_images/dfe_1_13_1.png]

Fit the LOF data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_lof = moments.Inference.optimize_log_fmin(
 p_guess, fs_lof, model_func_lof,
 lower_bound=lower_bound, upper_bound=upper_bound,
 multinom=False)

model_lof = model_func_lof(opt_params_lof, fs_lof.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_lof[0]:.4f}")
print("scale:", f"{opt_params_lof[1]:.1f}")
print("anc misid:", f"{opt_params_lof[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_lof, fs_lof))

moments.Plotting.plot_1d_comp_Poisson(model_lof, fs_lof, residual="linear")

optimal parameters:
shape: 0.3937
scale: 3802.9
anc misid: 0.0021
Log-likelihood: -246.78811141192315

[image: ../_images/dfe_1_14_1.png]

We can compare our results using this simpler two-epoch demographic model to our
previous findings:

print("Missense DFE:")
shape = opt_params_mis[0]
scale = opt_params_mis[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):
 cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
 cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
 print(f"{s0} <= s < {s1}:", f"{cdf1 - cdf0:.3f}")
 if s1 == ss[-1]:
 print(f"s >= {s1}:", f"{1 - cdf1:.3f}")

print()
print("LOF DFE:")
shape = opt_params_lof[0]
scale = opt_params_lof[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):
 cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
 cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
 print(f"{s0} <= s < {s1}:", f"{cdf1 - cdf0:.3f}")
 if s1 == ss[-1]:
 print(f"s >= {s1}:", f"{1 - cdf1:1.3f}")

Missense DFE:
0 <= s < 1e-05: 0.251
1e-05 <= s < 0.0001: 0.132
0.0001 <= s < 0.001: 0.198
0.001 <= s < 0.01: 0.266
s >= 0.01: 0.153

LOF DFE:
0 <= s < 1e-05: 0.025
1e-05 <= s < 0.0001: 0.038
0.0001 <= s < 0.001: 0.093
0.001 <= s < 0.01: 0.223
s >= 0.01: 0.621

Comparing to the table above, these look pretty similar - that’s a good sign
that our inferences are fairly robust to slightly poorer fits of the
demographic model.

But what if our demographic model is way off, such as assuming constant
population size?

here, we'll only fit the ancestral-state misidentification rate
def model_func(params, ns):
 p_misid = params
 fs = moments.Demographics1D.snm(ns)
 fs = (1 - p_misid) * fs + p_misid * fs[::-1]
 return fs

p_guess = [0.02]
lower_bound = [1e-3]
upper_bound = [0.999]

opt_params = moments.Inference.optimize_log_fmin(
 p_guess, fs_syn, model_func,
 lower_bound=lower_bound, upper_bound=upper_bound)

model = model_func(opt_params, fs_syn.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, fs_syn)
Ne = opt_theta / u_syn / 4

print("optimal Ne scaling:", f"{Ne:.2f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model, fs_syn))

moments.Plotting.plot_1d_comp_multinom(model, fs_syn, residual="linear")

optimal Ne scaling: 20930.55
Log-likelihood: -4856.925204009832

[image: ../_images/dfe_1_16_1.png]

Set up the spectrum cache for this constant-size demographic model:

def selection_spectrum(gamma):
 fs = moments.LinearSystem_1D.steady_state_1D(fs_syn.sample_sizes[0], gamma=gamma)
 fs = moments.Spectrum(fs)
 return fs

spectrum_cache = {}
spectrum_cache[0] = selection_spectrum(0)

gammas = np.logspace(-4, 3, 61)
for gamma in gammas:
 spectrum_cache[gamma] = selection_spectrum(-gamma)

Set up the mutation rates and DFE functions:

theta_mis = opt_theta * u_mis / u_syn
theta_lof = opt_theta * u_lof / u_syn

dxs = ((gammas - np.concatenate(([gammas[0]], gammas))[:-1]) / 2
 + (np.concatenate((gammas, [gammas[-1]]))[1:] - gammas) / 2)

def dfe_func(params, ns, theta=1):
 alpha, beta, p_misid = params
 fs = spectrum_cache[0] * scipy.stats.gamma.cdf(gammas[0], alpha, scale=beta)
 weights = scipy.stats.gamma.pdf(gammas, alpha, scale=beta)
 for gamma, dx, w in zip(gammas, dxs, weights):
 fs += spectrum_cache[gamma] * dx * w
 fs = theta * fs
 return (1 - p_misid) * fs + p_misid * fs[::-1]

def model_func_missense(params, ns):
 return dfe_func(params, ns, theta=theta_mis)

def model_func_lof(params, ns):
 return dfe_func(params, ns, theta=theta_lof)

Fit the missense data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_mis = moments.Inference.optimize_log_fmin(
 p_guess, fs_mis, model_func_missense,
 lower_bound=lower_bound, upper_bound=upper_bound,
 multinom=False)

model_mis = model_func_missense(opt_params_mis, fs_mis.sample_sizes)
print("optimal parameters (missense):")
print("shape:", f"{opt_params_mis[0]:.4f}")
print("scale:", f"{opt_params_mis[1]:.1f}")
print("anc misid:", f"{opt_params_mis[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_mis, fs_mis))

moments.Plotting.plot_1d_comp_multinom(model_mis, fs_mis, residual="linear")

optimal parameters (missense):
shape: 0.4448
scale: 82.4
anc misid: 0.0147
Log-likelihood: -1065.0798831623356

[image: ../_images/dfe_1_19_1.png]

Fit the LOF data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_lof = moments.Inference.optimize_log_fmin(
 p_guess, fs_lof, model_func_lof,
 lower_bound=lower_bound, upper_bound=upper_bound,
 multinom=False)

model_lof = model_func_lof(opt_params_lof, fs_lof.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_lof[0]:.4f}")
print("scale:", f"{opt_params_lof[1]:.1f}")
print("anc misid:", f"{opt_params_lof[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_lof, fs_lof))

moments.Plotting.plot_1d_comp_multinom(model_lof, fs_lof, residual="linear")

optimal parameters:
shape: 0.5298
scale: 1601.8
anc misid: 0.0021
Log-likelihood: -237.79096099886482

[image: ../_images/dfe_1_20_1.png]

And now comparing our results using the standard neutral model as the underlying
demography:

print("Missense DFE:")
shape = opt_params_mis[0]
scale = opt_params_mis[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):
 cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
 cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
 print(f"{s0} <= s < {s1}:", cdf1 - cdf0)
 if s1 == ss[-1]:
 print(f"s >= {s1}:", 1 - cdf1)

print()
print("LOF DFE:")
shape = opt_params_lof[0]
scale = opt_params_lof[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):
 cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
 cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
 print(f"{s0} <= s < {s1}:", cdf1 - cdf0)
 if s1 == ss[-1]:
 print(f"s >= {s1}:", 1 - cdf1)

Missense DFE:
0 <= s < 1e-05: 0.10753022385487969
1e-05 <= s < 0.0001: 0.18776852548601836
0.0001 <= s < 0.001: 0.42679335393077944
0.001 <= s < 0.01: 0.27674764907250127
s >= 0.01: 0.0011602476558212338

LOF DFE:
0 <= s < 1e-05: 0.01423964365346152
1e-05 <= s < 0.0001: 0.033952075858474665
0.0001 <= s < 0.001: 0.11371870531196496
0.001 <= s < 0.01: 0.34510157846413436
s >= 0.01: 0.49298799671196447

These distributions look quite different - in particular, both the missense and LOF
variants are inferred to be much more deleterious. This is because we did not account
for population size expansions in it history, which leads to an excess of rare variants
for each class of mutations, and the model over-compensates for the excess of rare
variants by fitting a DFE that is more skewed toward larger selection coefficients.

References

[Boyko]
Boyko, Adam R., et al. “Assessing the evolutionary impact of amino acid mutations
in the human genome.” PLoS Genetics 4.5 (2008): e1000083.

[Karczewski]
Karczewski, Konrad J., et al. “The mutational constraint spectrum quantified
from variation in 141,456 humans.” Nature 581.7809 (2020): 434-443.

[Keightley]
Keightley, Peter D., and Adam Eyre-Walker. “Joint inference of the distribution
of fitness effects of deleterious mutations and population demography based on
nucleotide polymorphism frequencies.” Genetics 177.4 (2007): 2251-2261.

[Kim]
Kim, Bernard Y., Christian D. Huber, and Kirk E. Lohmueller. “Inference of the
distribution of selection coefficients for new nonsynonymous mutations using
large samples.” Genetics 206.1 (2017): 345-361.

[Ragsdale]
Ragsdale, Aaron P., et al. “Triallelic population genomics for inferring
correlated fitness effects of same site nonsynonymous mutations.”
Genetics 203.1 (2016): 513-523.

[1000G]
1000 Genomes Project Consortium. “A global reference for human genetic variation.”
Nature 526.7571 (2015): 68-74.

Linkage disequilibrium and recombination

Todo

This module has not been completed.

Sections

	Recombination and low-order LD statistics

	Ohta and Kimura

	Single population LD decay curves

	Multiple populations

	Selfing

Selection at two loci

By Aaron Ragsdale, January 2021.

Note

This module has not been completed - I’ve placed to-dos where content is
incoming. If you find an error here, or find some aspects confusing, please don’t
hesitate to get in touch or open an issue. Thanks!

Most users of moments will be most interested in computing the single-site SFS and
comparing it to data. However, moments can do much more, such as computing expectations
for LD under complex demography, or triallelic or two-locus frequency spectra. Here, we’ll
explore what we can do with the two-locus methods available in moments.TwoLocus.

import moments.TwoLocus
import numpy as np
import matplotlib.pylab as plt
import pickle, gzip

The two-locus allele frequency spectrum

Similar to the single-site SFS, the two-locus frequency spectrum stores the number (or
density) of pairs of loci with given two-locus haplotype counts. Suppose the left locus
permits alleles A/a and the right locus permits B/b, so that there are four possible
haplotypes: (AB, Ab, aB, and ab). In a sample size of n haploid samples, we
observe some number of each haplotype, \(n_{AB} + n_{Ab} + n_{aB} + n_{ab} = n\). The
two-locus frequency spectrum stores the observed number of pairs of loci with each possible
sampling configuration, so that \(\Psi_n(i, j, k)\) is the number (or density) of pairs
of loci with i type AB, j type Ab, and k type aB.

moments.TwoLocus lets us compute the expectation of \(\Psi_n\) for
single-population demographic scenarios, allowing for population size changes over time,
as well as arbitrary recombination distance separating the two loci and selection at
one or both loci. While moments.TwoLocus has a reversible mutation model implemented,
here we’ll focus on the infinite sites model (ISM), under the assumption that
\(N_e \mu \ll 1\) at both loci.

Below, we’ll walk through how to compute the sampling distribution
for two-locus haplotypes for a given sample size, describe its relationship to common
measures of linkage disequilibrium (LD), and explore how recombination, demography, and
selection interacts to alter expected patterns of LD. In particular, we’ll focus on
a few different models of selection, dominance, and epistasic interactions between loci,
and ask under what conditions those patterns are expected to differ or to be confounded.

Citing this work

Demographic inference using a diffusion approximation-based solution for \(\Psi_n\)
was introduced in [Ragsdale_Gutenkunst]. The moments-based method, which is implemented
here, was described in [Ragsdale_Gravel].

Two-locus haplotype distribution under neutrality

A quick comment on computational efficiency

The frequency spectrum \(\Psi_n\) is displayed as a 3-dimensional array in moments,
and the size grows quite quickly in the sample size \(n\). (The number of frequency
bins is \(\frac{1}{6}(n+1)(n+2)(n+3)\), so it grows as \(n^3\).) Thus, solving
for \(\Psi\) gets quite expensive for large sample sizes.

[image: ../_images/two_locus_selection_2_0.png]

Here, we see the time needed to compute the equilibrium frequency spectrum for a given
sample size. Recombination requires computing a jackknife operator for approximate
moment closure, which gets expensive for large sample sizes. However, we can
cache and reuse this jackknife matrix (the default behavior), so that much of the
computational time is saved from having to recompute that large matrix. However, we see
that simply computing the steady-state solution still
gets quite expensive as the sample sizes increase.

Below, we’ll see that for
non-zero recombination (as well as selection) our accuracy improves as we increase the
sample size. For this reason, we’ve pre-computed and cached results throughout this
page, and the code blocks give examples of how those results were created.

Two neutral loci

The moments.TwoLocus solution for the neutral frequency spectrum without recombination
(\(\rho = 4 N_e r = 0\)) is exact, while \(\rho > 0\) and selection require a
moment-closure approximation. This approximation grows more accurate for larger \(n\).

To get familiar with some common two-locus statistics (either summaries of \(\Psi_n\)
and \(\Psi\) itself), we can compare to some classical results, such as the expectation
for \(\sigma_d^2 = \frac{\mathbb{E}[D^2]}{\mathbb{E}[p(1-p)q(1-q)]}\), where D is
the standard covariance measure of LD, and p and q are allele frequencies at the
left and right loci, respectively [Ohta]:

rho = 0
n = 10
Psi = moments.TwoLocus.Demographics.equilibrium(n, rho=rho)
sigma_d2 = Psi.D2() / Psi.pi2()
print(r"moments.TwoLocus σ_d^2, $r=0$:", sigma_d2)
print(r"Ohta and Kimura expectation, $r=0$:", 5 / 11)

moments.TwoLocus σ_d^2, $r=0$: 0.4545454545454553
Ohta and Kimura expectation, $r=0$: 0.45454545454545453

And we can plot the LD-decay curve for \(\sigma_d^2\) for a range of recombination
rates and a few different sample sizes, and compare to [Ohta]’s expectation, which is
\(\sigma_d^2 = \frac{5 + \frac{1}{2}\rho}{11 + \frac{13}{2}\rho + \frac{1}{2}\rho^2}\):

[image: ../_images/two_locus_selection_4_0.png]

The moments approximation breaks down for recombination rates around \(\rho\approx50\)
but is very accurate for lower recombination rates, and this accuracy increases with the
sample size. To be safe, we can assume that numerical error starts to creep
in around \(rho\approx25\), which for human parameters, is very roughly 50 or 100kb.
So we’re limited to looking at LD in relatively shorter regions. For higher recombination
rates, we can turn to moments.LD, which lets us model multiple populations, but
is restricted to neutral loci and low-order statistics.

The statistics \(\mathbb{E}[D^2]\) and \(\mathbb{E}[p(1-p)q(1-q)]\) are low-order
summaries of the full sampling distribution, similar to how heterozygosity or Tajima’s D
are low-order summaries of the single-site SFS. We can visualize some features of the
full two-locus haplotype frequency distribution instead, following Figure 1 in Hudson’s
classical paper on the two-locus sampling distribution [Hudson]. Here, we’ll look at
a slice in the 3-dimensional distribution: if we observe \(n_A\) samples carrying A
at the left locus, and \(n_B\) carrying B at the right locus, what is the probability
that we observe n_{AB} haplotypes with A and B coupled in the same sample? This
marginal distribution will depend on \(\rho\):

rhos = [0.5, 5.0, 30.0]
n = 30
nA = 15
nB = 12

first we'll get the slice for the given frequencies from the "hnrho" file
from RR Hudson: http://home.uchicago.edu/~rhudson1/source/twolocus.html
hudson = {}
import gzip
with gzip.open("./data/h30rho.gz", "rb") as fin:
 at_frequencies = False
 for line in fin:
 l = line.decode()
 if "freq" in l:
 if int(l.split()[1]) == nA and int(l.split()[2]) == nB:
 at_frequencies = True
 else:
 at_frequencies = False
 if at_frequencies:
 rho = float(l.split()[1])
 if rho in rhos:
 hudson[rho] = np.array([float(v) for v in l.split()[2:]])

fig = plt.figure(figsize=(12, 4))
for ii, rho in enumerate(rhos):
 # results are cached, having used the following line to create the spectra
 # F = moments.TwoLocus.Demographics.equilibrium(n, rho=rho)
 F = pickle.load(gzip.open(f"./data/two-locus/eq.n_{n}.rho_{rho}.fs.gz", "rb"))
 counts, pAB = moments.TwoLocus.Util.pAB(F, nA, nB)
 pAB /= pAB.sum()
 ax = plt.subplot(1, 3, ii + 1)
 ax.bar(counts - 0.2, hudson[rho] / hudson[rho].sum(), width=0.35, label="Hudson")
 ax.bar(counts + 0.2, pAB, width=0.35, label="moments.TwoLocus")
 ax.set_title(f"rho = {rho}")
 if ii == 0:
 ax.set_ylabel("Probability")
 ax.legend()
 if ii == 1:
 ax.set_xlabel(r"n_{AB}")
fig.tight_layout()

[image: ../_images/two_locus_selection_5_0.png]

For low recombination rates, the marginal distribution of AB haplotypes is skewed
toward the maximum or minimum number of copies, resulting in higher LD, while for larger
recombination rates, the distribution of \(n_{AB}\) is concentrated around frequencies
that result in low levels of LD. We can also see that moments.TwoLocus agrees well
with Hudson’s results under neutrality and steady state demography.

Note

Below, we’ll be revisiting these same statistics and seeing how various models
of selection at the two loci, as well as non-steady state demography, distort the
expected distributions.

How does selection interact across multiple loci?

There has been a recent resurgence of interest in learning about the interaction of
selection at two or more loci (e.g., for studies within the past few years, see
[Sohail], [Garcia], [Sandler], [Good]). This has largely been driven by the
relatively recent availability of large-scale sequencing datasets that allow us to
observe patterns of allele frequencies and LD for negatively selected loci that may
be segregating at very low frequencies in a population. Some of these studies are
theory-driven (e.g., [Good]), while others rely on forward Wright-Fisher simulators
(such as SLiM or fwdpy11) to compare observed patterns between data and
simulation.

These approaches have their limitations: analytical results are largely
constrained to simple selection scenarios and steady-state demography, while simulation
studies are computationally expensive and thus often end up limited to still a handful
of selection and demographic scenarios. Numerical approaches to compute expectations of
statistics of interest could therefore provide a far more efficient way to compute
explore parameter regimes and compare model expectations to data in inference frameworks.

Here, we’ll explore a few selection models, including both dominance and epistatic
effects, that theory predicts should result in different patterns of LD between two
selected loci. We first describe the selection models, and then we compare their
expected patterns of LD.

Selection models at two loci

At a single locus, the effects of selection and dominance are captured by the selection
coefficient \(s\) and the dominance coefficient \(h\), so that fitnesses of the
diploid genotypes are given by

Table 3 Single-locus fitnesses.

	Genotype

	Relative fitness

	aa

	\(1\)

	Aa

	\(1 + 2hs\)

	AA

	\(1 + 2s\)

If \(h = 1/2\), i.e. selection is additive, this model reduces to a haploid
selection model where genotype A has relative fitness \(1 + s\) compared to a.

Additive selection, no epistasis

Additive selection models for two loci, like in the single-locus case, reduce to
haploid-based models, where we only need to know the relative fitnesses of the two-locus
haplotypes AB, Ab, aB, and ab. When we say “no epistasis,” we typically mean that
the relative fitness of an individual carrying both derived alleles (AB) is additive
across loci, so that if \(s_A\) is the selection coefficient at the left (A/a)
locus, and \(s_B\) is the selection coefficient at the right (B/b) locus, then
\(s_{AB} = s_A + s_B\).

Table 4 No epistasis or dominance emits a haploid selection model.

	Genotype

	Relative fitness

	ab

	\(1\)

	Ab

	\(1 + s_A\)

	aB

	\(1 + s_B\)

	AB

	\(1 + s_{AB} = 1 + s_A + s_B\)

Additive selection with epistasis

Epistasis is typically modeled as a factor \(\epsilon\) that either increases or
decreases the selection coefficient for the AB haplotype, so that
\(s_{AB} = s_A + s_B + \epsilon\). If \(|s_{AB}| > |s_A| + |s_A|\), i.e. the
fitness effect of the AB haplotype is greater than the sum of the effect of the Ab
and aB haplotypes, the effect is called synergistic epistasis, and if
\(|s_{AB}| < |s_A| + |s_A|\), it is refered to as antagonistic epistasis.

Table 5 A haploid selection model with epistasis.

	Genotype

	Relative fitness

	ab

	\(1\)

	Ab

	\(1 + s_A\)

	aB

	\(1 + s_B\)

	AB

	\(1 + s_{AB} = 1 + s_A + s_B + \epsilon\)

Simple dominance, no epistasis

Epistasis is the non-additive interaction of selective effects across loci. The
non-additive effect of selection within a locus is called dominance, when
\(s_{AA} \not= 2s_{Aa}\). Without epistasis, so that \(s_{AB}=s_{A}+s_{B}\),
and allowing for different selection and dominance coefficients at the two loci,
the fitness effects for two-locus diploid genotypes takes a simple form analogous
to the single-locus case with dominance. Here, we define the relative fitnesses of
two-locus diploid genotypes, which relies on the selection and dominance coefficients
at the left and right loci:

Table 6 Accounting for dominance requires modeling selection for diploid
genotypes, instead of the model reducing to selection on haploid genotypes.

	Genotype

	Relative fitness

	aabb

	\(1\)

	Aabb

	\(1 + 2 h_A s_A\)

	AAbb

	\(1 + 2 s_A\)

	aaBb

	\(1 + 2 h_B s_B\)

	AaBb

	\(1 + 2 h_A s_A + 2 h_B s_B\)

	AABb

	\(1 + 2 s_A + 2 h_B s_B\)

	aaBB

	\(1 + 2 s_B\)

	AaBB

	\(1 + 2 h_A s_A + 2 s_B\)

	AABB

	\(1 + 2 s_A + 2 s_B\)

Both dominance and epistasis

As additional non-additive interactions are introduced, it gets more difficult to
succinctly define general selection models with few parameters. A general selection
model that is flexible could simply define a selection coefficient for each two-locus
diploid genotype, in relation to the double wild-type homozygote (aabb). That is, define
\(s_{Aabb}\) as the selection coefficient for the Aabb genotype, \(s_{AaBb}\)
the selection coefficient for the AaBb genotype, and so on.

Gene-based dominance

In the above model, fitness is determined by combined hetero-/homozygosity at the two loci,
but it does not make a distinction between the different ways that double heterozygotes
(AaBb) could arise. Instead, we could imagine a model where diploid individual fitnesses
depend on the underlying haplotypes, i.e. whether selected mutations at the two loci are
coupled on the same background or are on different haplotypes.

For example, consider loss-of-function mutations in coding regions. Such mutations tend
to be severely damaging. We could think of the situation where diploid individual fitness
is strongly reduced when both copies carry a loss-of-function mutation, but much less
reduced if the individual has at least one copy without a mutation. In this scenario,
the haplotype combination Ab / aB will confer more reduced fitness compared to the
combination AB / ab, even though both are double heterozygote genotypes.

Perhaps the simplest model for gene-based dominance assumes that derived mutations at
the two loci (A and B) carry the same fitness cost, and fitness depends on the number
of haplotype copies within a diploid individual that have at least one such mutation. This
model requires just two parameters, a single selection coefficient s and a single
dominance coefficient h:

Table 7 A simple gene-based dominance model.

	Genotype

	Relative fitness

	ab / ab

	\(1\)

	Ab / ab

	\(1 + 2 h s\)

	aB / ab

	\(1 + 2 h s\)

	AB / ab

	\(1 + 2 h s\)

	Ab / Ab

	\(1 + 2 s\)

	aB / aB

	\(1 + 2 s\)

	Ab / aB

	\(1 + 2 s\)

	AB / Ab

	\(1 + 2 s\)

	AB / aB

	\(1 + 2 s\)

	AB / AB

	\(1 + 2 s\)

Note

Cite [Sanjak]

How do different selection models affect expected LD statistics?

Here, we will examine some relatively simple models in order to gain some intuition about
how selection, along with recombination and size changes, affect expected patterns of LD,
such as the decay curve of \(\sigma_d^2\) and Hudson-style slices in the two-locus
sampling distribution. The selection coefficients will be equal at the two loci, so that
the only selection parameters that change will be the selection models (dominance and
epistasis).

Additive selection with and without epistasis

Let’s first see how simple, additive selection distorts expected LD away from neutral
expectations at steady state. Plotted below are decay curves for both \(\sigma_d^2\)
and \(\sigma_d^2 = {\mathbb{E}[D]}{\mathbb{E}[p(1-p)q(1-q)]}\), a common signed LD
statistic.

For each parameter pair of selection coefficient \(\gamma = 2 N_e s\) and \(rho\),
we use the “helper” function that creates the input selection parameters for the
AB, Ab, and aB haplotypes, and then simulate the equilibrium two-locus sampling
distribution:

sel_params = moments.TwoLocus.Util.additive_epistasis(gamma, epsilon=0)
epsilon=0 means no epistasis, so s_AB = s_A + s_B
F = moments.TwoLocus.Demographics.equilibrium(n, rho=rho, sel_params=sel_params)
sigma_d1 = F.D() / F.pi2()
sigma_d2 = F.D2() / F.pi2()

[image: ../_images/two_locus_selection_6_0.png]

Already with this very simple selection model (no epistasis, no dominance, equal selection
at both loci), we find some interesting behavior. For very strong or very week selection,
signed-LD remains close to zero, but for intermediate selection, average \(D\) can be
significantly negative. As fitness effects get stronger, \(\sigma_d^2\) is reduced
dramatically compare to neutral expectations.

Todo

Plots of frequency conditioned LD.

The “helper” function that we used above converts input \(\gamma\) and \(\epsilon\)
to the selection parameters that are passed to moments.TwoLocus.Demographics functions.
The additive epistasis model implemented in the helper function
(moments.TwoLocus.Util.additive_epistasis) returns
\([(1+\epsilon)(\gamma_A + \gamma_B), \gamma_A, \gamma_B]\), so that if
\(\epsilon > 0\), we have synergistic epistasis, and if \(\epsilon < 0\), we
have antagonistic epistasis. Any value of \(\epsilon\) is permitted, and note that if
\(\epsilon\) is less than \(-1\), we get reverse-sign epistasis.

We’ll focus on two selection regions: mutations that are slightly deleterious with
\(\gamma=1\), and stronger selection with \(\gamma=20\). With an effective
population size of 10,000, note that \(\gamma=20\) corresponds to
\(s=0.001\) - by no means a lethal mutation, but strong enough to see some interesting
differences between selection regimes.

Below we again plot \(\sigma_d^2\) and \(\sigma_d^1\) for each set of parameters:

gammas = [-1, -20]
epsilons = [-1, -0.5, 0, 0.5, 1]

[image: ../_images/two_locus_selection_8_0.png]

From this, we can see that synergistic epistasis decreases \(\sigma_d^2\) and
antagonistic epistasis increases it above expectations for \(\epsilon=0\). For signed
LD, however, both positive and negative \(\epsilon\) push \(\sigma_d^1\) farther
away from zero:

[image: ../_images/two_locus_selection_9_0.png]

As expected, negative \(\epsilon\) (i.e. selection against the AB haplotype is less
strong than the sum of selection against A and B) leads to an excess of coupling
LD (pairs with more AB and ab haplotypes) than repulsion LD (pairs with more Ab
and aB haplotypes).

We can see this effect more clearly by looking at a slice in the two-locus sampling
distribution. Since we’re considering negative selection, we’ll look at entries in the
sampling distribution with low frequencies at the two loci. For doubletons at both sites:

rhos = [0.5, 5.0, 30.0]
n = 30
nA = 2
nB = 2

epsilon = [-0.5, 0, 1]

fig = plt.figure(figsize=(9, 3))
for ii, rho in enumerate(rhos):
 pABs = {}
 for eps in epsilon:
 sel_params = moments.TwoLocus.Util.additive_epistasis(gammas[0], epsilon=eps)
 # F = moments.TwoLocus.Demographics.equilibrium(
 # n, rho=rho, sel_params=sel_params)
 F = pickle.load(gzip.open(
 f"./data/two-locus/eq.n_{n}.rho_{rho}.sel_"
 + "_".join([str(s) for s in sel_params])
 + ".fs.gz",
 "rb"))
 counts, pAB = moments.TwoLocus.Util.pAB(F, nA, nB)
 pABs[eps] = pAB / pAB.sum()
 ax = plt.subplot(1, 3, ii + 1)
 ax.bar(counts - 0.25, pABs[epsilon[0]], width=0.22, label=rf"$\epsilon={epsilon[0]}$")
 ax.bar(counts, pABs[epsilon[1]], width=0.22, label=rf"$\epsilon={epsilon[1]}$")
 ax.bar(counts + 0.25, pABs[epsilon[2]], width=0.22, label=rf"$\epsilon={epsilon[2]}$")

 ax.set_title(rf"$\rho = {rho}$, $\gamma = {gammas[0]}$")
 ax.set_xlabel(r"n_{AB}")
 if ii == 0:
 ax.legend()
 ax.set_ylabel("Probability")
fig.tight_layout()

[image: ../_images/two_locus_selection_10_0.png]

fig = plt.figure(figsize=(9, 3))
for ii, rho in enumerate(rhos):
 pABs = {}
 for eps in epsilon:
 sel_params = moments.TwoLocus.Util.additive_epistasis(gammas[1], epsilon=eps)
 # F = moments.TwoLocus.Demographics.equilibrium(
 # n, rho=rho, sel_params=sel_params)
 F = pickle.load(gzip.open(
 f"./data/two-locus/eq.n_{n}.rho_{rho}.sel_"
 + "_".join([str(s) for s in sel_params])
 + ".fs.gz",
 "rb"))
 counts, pAB = moments.TwoLocus.Util.pAB(F, nA, nB)
 pABs[eps] = pAB / pAB.sum()
 ax = plt.subplot(1, 3, ii + 1)
 ax.bar(counts - 0.25, pABs[epsilon[0]], width=0.22, label=rf"$\epsilon={epsilon[0]}$")
 ax.bar(counts, pABs[epsilon[1]], width=0.22, label=rf"$\epsilon={epsilon[1]}$")
 ax.bar(counts + 0.25, pABs[epsilon[2]], width=0.22, label=rf"$\epsilon={epsilon[2]}$")

 ax.set_title(rf"$\rho = {rho}$, $\gamma = {gammas[1]}$")
 ax.set_xlabel(r"n_{AB}")
 if ii == 0:
 ax.legend()
 ax.set_ylabel("Probability")
fig.tight_layout()

[image: ../_images/two_locus_selection_11_0.png]

And while very few mutations will reach high frequency, we can also look at the case with
\(n_A=15\) and \(n_B=12\) in a sample size of 30. Here, because selection
and recombination require the jackknife approximation which works better with larger
sample sizes, we solved for the equilibrium distribution using size \(n=60\) and then
projected to size 30.

n = 60
n_proj = 30
nA = 15
nB = 12
rho = 1

F = moments.TwoLocus.Demographics.equilibrium(n, rho=rho, sel_params=sel_params)
by default, we usually cache projection steps, but set cache=False here to
save on memory usage
F_proj = F.project(n_proj, cache=False)
counts, pAB = moments.TwoLocus.Util.pAB(F_proj, nA, nB)
pAB /= pAB.sum()

[image: ../_images/two_locus_selection_12_0.png]

[image: ../_images/two_locus_selection_13_0.png]

Dominance

We again assume fitness effects are the same at both loci, and now explore how dominance
affects LD. We’ll start by looking at the “simple” dominance model without epistasis, so
that fitness effects are additive across loci. When simulating with dominance, the selection
model no longer collapses to a haploid model, but instead we need to specify the selection
coefficients for each possible diploid haplotype pair AB/AB, AB/Ab, etc. We’ll use
another helper function to generate those selection coefficients and pass them to the
sel_params_general keyword argument.

For example, to simulate the equilibrium distribution with selection coefficient -5 and
dominance coefficient 0.1 under the simple dominance model:

gamma = -5
h = 0.1
sel_params = moments.TwoLocus.Util.simple_dominance(gamma, h=h)
F = moments.TwoLocus.Demographics.equilibrium(n, rho, sel_params_general=sel_params)

Let’s look at how \(\sigma_d^2\) and \(\sigma_d^1\) are affected by dominance.

[image: ../_images/two_locus_selection_14_0.png]
[image: ../_images/two_locus_selection_14_1.png]

Squared LD (\(\sigma_d^2\)) is increased for recessive variants, while pairs of
dominant mutations reduce it below expectations for additive variants.

[image: ../_images/two_locus_selection_15_0.png]
[image: ../_images/two_locus_selection_15_1.png]

Similarly, recessive mutations lead to larger average negative signed LD. However, this
pattern also depends on the underlying selection coefficient, with LD decay curves that
can vary qualitatively for different selection coefficients and recombination rates
between loci, even when dominance is equivalent.

Todo

Relate to associative overdominance work, e.g. Charlesworth, and Hill-Robertson
interference.

Gene-based dominance

Todo

All the comparisons, show LD curves and expectations for signed LD, depending
on the selection model, maybe explore how population size changes distort these
expectations.

Non-steady-state demography

\(\mathcal{K}\)

Todo

Are any of these statistics quite sensitive to bottlenecks or expansions?

Todo

Discussion on what we can expect to learn from signed LD-based inferences. Are
the various selection models and demography hopelessly confounded?

References

[Garcia]
Garcia, Jesse A., and Kirk E. Lohmueller. “Negative linkage disequilibrium between
amino acid changing variants reveals interference among deleterious mutations in the
human genome.” bioRxiv (2020).

[Good]
(1,2)
Good, Benjamin H. “Linkage disequilibrium between rare mutations.”
Genetics (2022).

[Hudson]
Hudson, Richard R. “Two-locus sampling distributions and their application.”
Genetics 159.4 (2001): 1805-1817.

[Ohta]
(1,2)
Ohta, Tomoko, and Motoo Kimura. “Linkage disequilibrium between two segregating
nucleotide sites under the steady flux of mutations in a finite population.”
Genetics 68.4 (1971): 571.

[Ragsdale_Gutenkunst]
Ragsdale, Aaron P. and Ryan N. Gutenkunst. “Inferring demographic history using
two-locus statistics.” Genetics 206.2 (2017): 1037-1048.

[Ragsdale_Gravel]
Ragsdale, Aaron P. and Simon Gravel. “Models of archaic admixture and recent history
from two-locus statistics.” PLoS Genetics 15.8 (2019): e1008204.

[Sandler]
Sandler, George, Stephen I. Wright, and Aneil F. Agrawal. “Using patterns of signed
linkage disequilibria to test for epistasis in flies and plants.” bioRxiv (2020).

[Sanjak]
Sanjak, Jaleal S., Anthony D. Long, and Kevin R. Thornton. “A model of compound
heterozygous, loss-of-function alleles is broadly consistent with observations
from complex-disease GWAS datasets.” PLoS genetics 13.1 (2017): e1006573.

[Sohail]
Sohail, Mashaal, et al. “Negative selection in humans and fruit flies involves
synergistic epistasis.” Science 356.6337 (2017): 539-542.

API for site frequency spectra

The Spectrum object

	
class moments.Spectrum(data, mask=False, mask_corners=True, data_folded=None, check_folding=True, dtype=<class 'float'>, copy=True, fill_value=nan, keep_mask=True, shrink=True, pop_ids=None)

	Represents a single-locus biallelic frequency spectrum.

Spectra are represented by masked arrays. The masking allows us to ignore
specific entries in the spectrum. When simulating under the standard infinite
sites model (ISM), the entries we mask are the bins specifying absent or fixed
variants. When using a reversible mutation model (i.e. the finite genome model),
we track the density of variants in fixed bins, setting mask_corners to
False.

	Parameters:

	
	data (array) – An array with dimension equal to the number of populations.
Each dimension has length \(n_i+1\), where \(n_i\) is the
sample size for the i-th population.

	mask – An optional array of the same size as data. ‘True’ entries in
this array are masked in the Spectrum. These represent missing
data categories. (For example, you may not trust your singleton
SNP calling.)

	mask_corners – If True (default), the ‘observed in none’ and ‘observed
in all’ entries of the FS will be masked. Typically these
entries are masked. In the defaul infinite sites model, moments does
not reliably calculate the fixed-bin entries, so you will almost always
want mask_corners=True. The exception is if we are simulating under
the finite genome model, in which case we track the probability of
a site to be fixed for either allele.

	data_folded (bool, optional) – If True, it is assumed that the input data is folded. An
error will be raised if the input data and mask are not
consistent with a folded Spectrum.

	check_folding (bool, optional) – If True and data_folded=True, the data and mask will be
checked to ensure they are consistent with a folded
Spectrum. If they are not, a warning will be printed.

	pop_ids (list of strings, optional) – Optional list of strings containing the population labels,
with length equal to the dimension of data.

	Returns:

	A frequency spectrum object, as a masked array.

	
Fst(pairwise=False)

	Wright’s Fst between the populations represented in the fs.

This estimate of Fst assumes random mating, because we don’t have
heterozygote frequencies in the fs.

Calculation is by the method of Weir and Cockerham Evolution 38:1358
(1984). For a single SNP, the relevant formula is at the top of page
1363. To combine results between SNPs, we use the weighted average
indicated by equation 10.

	Parameters:

	pairwise (bool) – Defaults to False. If True, returns a dictionary
of all pairwise Fst within the multi-dimensional spectrum.

	
S()

	Returns the number of segregating sites in the frequency spectrum.

	
Tajima_D()

	Returns Tajima’s D.

Following Gillespie “Population Genetics: A Concise Guide” pg. 45

	
Watterson_theta()

	Returns Watterson’s estimator of theta.

Note

This function is only sensible for 1-dimensional spectra.

	
Zengs_E()

	Returns Zeng et al.’s E statistic.

From Zeng et al., “Statistical Tests for Detecting Positive Selection by
Utilizing High-Frequency Variants.” Genetics, 2016.

	
admix(idx0, idx1, num_lineages, proportion, new_id=None)

	Returns a new frequency spectrum with an admixed population that arose through
admixture from indexed populations with given number of lineages and
proportions from parental populations. This serves as a wrapper for
Manips.admix_into_new, with the added feature of handling pop_ids.

If the number of lineages that move are equal to the number
of lineages previously present in a source population, that source
population is marginalized.

	Parameters:

	
	idx0 (int) – Index of first source population.

	idx1 (int) – Index of second source population.

	num_lineages (int) – Number of lineages in the new population. Cannot be
greater than the number of existing lineages in either source
populations.

	proportion (float) – The proportion of lineages that come from the first
source population (1-proportion acestry comes from the second source
population). Must be a number between 0 and 1.

	new_id (str, optional) – The ID of the new population. Can only be used if the
population IDs are specified in the input SFS.

	
branch(idx, n, new_id=None)

	A “branch” event, where a population gives rise to a child population, while
persisting. This is conceptually similar to the split event. The number of
lineages in the new population is provided, and the number of lineages in the
source/parental population is the original sample size minus the number
requested for the branched population. Returns a new frequency spectrum.

	Parameters:

	
	idx (int) – The index of the population to branch.

	n (int) – The sample size of the new population.

	new_id – The population ID of the branch populations. The parental
population retains its original population ID. Can only be
used if pop_ids are given for the input spectrum.

	
fixed_size_sample(nsamples, include_masked=False)

	Generate a resampled SFS from the current one. Thus, the resampled SFS
follows a multinomial distribution given by the proportion of sites
in each bin in the original SFS.

	Parameters:

	
	nsamples (int) – Number of samples to include in the new SFS.

	include_masked (bool, optional) – If True, use all bins from the SFS. Otherwise,
use only non-masked bins. Defaults to False.

	
fold()

	Returns a folded frequency spectrum.

The folded fs assumes that information on which allele is ancestral or
derived is unavailable. Thus the fs is in terms of minor allele
frequency. This makes the fs into a “triangular” array. If a masked cell
is folded into non-masked cell, the destination cell is masked as well.

Folding is not done in-place. The return value is a new Spectrum object.

	
static from_angsd(sfs_file, sample_sizes, pop_ids=None, folded=False, mask_corners=True)

	Convert ANGSD output to a moments Spectrum object. The sample sizes
are given as number of haploid genome copies (twice the number of
sampled diploid individuals).

	Parameters:

	
	sfs_file (string) – The n-dimensional SFS from ANGSD. This should be a
file with a single line of numbers, as entries in the SFS.

	sample_sizes (list) – A list of integers with length equal to the number
of population, storing the haploid sample size in each population.
The order must match the population order provided to ANGSD.

	pop_ids (list) – A list of strings equal with length equal to the number
of population, specifying the population name for each.

	folded (bool) – If False (default), we assume ancestral states are
known, returning an unfolded SFS. If True, the returned SFS is folded.

	mask_corners (bool) – If True (default), mask the fixed bins in the
SFS. If False, the fixed bins will remain unmasked.

	Returns:

	A moments site frequency spectrum.

	Return type:

	moments.Spectrum

	
static from_data_dict(data_dict, pop_ids, projections, mask_corners=True, polarized=True)

	Spectrum from a dictionary of polymorphisms.

The data dictionary should be organized as:

{snp_id: {
 'segregating': ['A','T'],
 'calls': {
 'YRI': (23,3),
 'CEU': (7,3)
 },
 'outgroup_allele': 'T'
}}

The ‘calls’ entry gives the successful calls in each population, in the
order that the alleles are specified in ‘segregating’.
Non-diallelic polymorphisms are skipped.

	Parameters:

	
	pop_ids – list of which populations to make fs for.

	projections – list of sample sizes to project down to for each
population.

	polarized – If True, the data are assumed to be correctly polarized by
‘outgroup_allele’. SNPs in which the ‘outgroup_allele’
information is missing or ‘-’ or not concordant with the
segregating alleles will be ignored.
If False, any ‘outgroup_allele’ info present is ignored,
and the returned spectrum is folded.

	
static from_demes(g, sampled_demes=None, sample_sizes=None, sample_times=None, samples=None, Ne=None, unsampled_n=4, gamma=None, h=None)

	Takes a deme graph and computes the SFS. demes is a package for
specifying demographic models in a user-friendly, human-readable YAML
format. This function automatically parses the demographic description
and returns a SFS for the specified populations and sample sizes.

Note

If a deme sample time is requested that is earlier than the deme’s
end time, for example to simulate ancient samples, we must create a
new population for that ancient sample. This can cause large
slow-downs, as the computation cost of computing the SFS grows
quickly in the number of populations.

	Parameters:

	
	g (str or demes.DemeGraph) – A demes DemeGraph from which to compute the SFS. The DemeGraph
can either be specified as a YAML file, in which case g is a string,
or as a DemeGraph object.

	sampled_demes (list of strings) – A list of deme IDs to take samples from. We can repeat
demes, as long as the sampling of repeated deme IDs occurs at distinct
times.

	sample_sizes (list of ints) – A list of the same length as sampled_demes,
giving the sample sizes for each sampled deme.

	sample_times (list of floats, optional) – If None, assumes all sampling occurs at the end of the
existence of the sampled deme. If there are
ancient samples, sample_times must be a list of same length as
sampled_demes, giving the sampling times for each sampled
deme. Sampling times are given in time units of the original deme graph,
so might not necessarily be generations (e.g. if g.time_units is years)

	Ne (float, optional) – reference population size. If none is given, we use the initial
size of the root deme.

	unsampled_n (int, optional) – The default sample size of unsampled demes, which must be
greater than or equal to 4.

	gamma (float or dict) – The scaled selection coefficient(s), 2*Ne*s. Defaults to None,
which implies neutrality. Can be given as a scalar value, in which case
all populations have the same selection coefficient. Alternatively, can
be given as a dictionary, with keys given as population names in the
input Demes model. Any population missing from this dictionary will be
assigned a selection coefficient of zero. A non-zero default selection
coefficient can be provided, using the key _default. See the Demes
exension documentation for more details and examples.

	h (float or dict) – The dominance coefficient(s). Defaults to additivity (or genic
selection). Can be given as a scalar value, in which case all populations
have the same dominance coefficient. Alternatively, can be given as a
dictionary, with keys given as population names in the input Demes model.
Any population missing from this dictionary will be assigned a dominance
coefficient of 1/2 (additivity). A different default dominance
coefficient can be provided, using the key _default. See the Demes
exension documentation for more details and examples.

	Returns:

	A moments site frequency spectrum, with dimension equal to the
length of sampled_demes, and shape equal to sample_sizes plus one
in each dimension, indexing the allele frequency in each deme from 0
to n[i], where i is the deme index.

	Return type:

	moments.Spectrum

	
static from_file(fid, mask_corners=True, return_comments=False)

	Read frequency spectrum from file.

See to_file for details on the file format.

	Parameters:

	
	fid (string) – string with file name to read from or an open file object.

	mask_corners (bool, optional) – If True, mask the ‘absent in all samples’ and ‘fixed in
all samples’ entries.

	return_comments (bool, optional) – If true, the return value is (fs, comments), where
comments is a list of strings containing the comments
from the file (without #’s).

	
static from_ms_file(fid, average=True, mask_corners=True, return_header=False, pop_assignments=None, pop_ids=None, bootstrap_segments=1)

	Read frequency spectrum from file of ms output.

	Parameters:

	
	fid – string with file name to read from or an open file object.

	average – If True, the returned fs is the average over the runs in the ms
file. If False, the returned fs is the sum.

	mask_corners – If True, mask the ‘absent in all samples’ and ‘fixed in
all samples’ entries.

	return_header – If True, the return value is (fs, (command,seeds), where
command and seeds are strings containing the ms
commandline and the seeds used.

	pop_assignments – If None, the assignments of samples to populations is
done automatically, using the assignment in the ms
command line. To manually assign populations, pass a
list of the from [6,8]. This example places
the first 6 samples into population 1, and the next 8
into population 2.

	pop_ids – Optional list of strings containing the population labels.
If pop_ids is None, labels will be “pop0”, “pop1”, …

	bootstrap_segments – If bootstrap_segments is an integer greater than 1,
the data will be broken up into that many segments
based on SNP position. Instead of single FS, a list
of spectra will be returned, one for each segment.

	
static fromfile(fid, mask_corners=True, return_comments=False)

	Read frequency spectrum from file.

See to_file for details on the file format.

	Parameters:

	
	fid (string) – string with file name to read from or an open file object.

	mask_corners (bool, optional) – If True, mask the ‘absent in all samples’ and ‘fixed in
all samples’ entries.

	return_comments (bool, optional) – If true, the return value is (fs, comments), where
comments is a list of strings containing the comments
from the file (without #’s).

	
genotype_matrix(num_sites=None, sample_sizes=None, diploid_genotypes=False)

	Generate a genotype matrix of independent loci. For multi-population spectra,
the individual columns are filled in the sample order as the populations
in the SFS.

Note

Sites in the output genotype matrix are necessarily separated by
infinite recombination. The SFS assumes all loci are segregating
independently, so there is no linkage between them.

Returns a genotype matrix of size number of sites by total sample size.

	Parameters:

	
	num_sites – Defaults to None, in which case we take a poisson sample from
the SFS. Otherwise, we take a fixed number of sites.

	sample_sizes – The sample size in each population, as a list with length
of the number of dimension (populations) in the SFS.

	Diploid_genotypes:

	Defaults to False, in which case we return a haplotype
matrix of size (num_sites x sum(sample_sizes)). If True, we return a
diploid genotype matrix (filled with 0, 1, 2) of size
(num_sites x sum(sample_sizes)/2).

	
integrate(Npop, tf, dt_fac=0.02, gamma=None, h=None, m=None, theta=1.0, adapt_dt=False, finite_genome=False, theta_fd=None, theta_bd=None, frozen=[False])

	Method to simulate the spectrum’s evolution for a given set of demographic
parameters. The SFS is integrated forward-in-time, and the integration
occurs in-place, meaning you need only call fs.integrate(), and the
fs is updated.

	Parameters:

	
	Npop (list or function that returns a list) – List of populations’ relative effective sizes. Can be given
as a list of positive values for constant sizes, or as a function that
returns a list of sizes at a given time.

	tf (float) – The total integration time in genetic units.

	dt_fac (float, optional) – The timestep factor, default is 0.02. This parameter typically
does not need to be adjusted.

	gamma (float or list of floats, optional) – The selection coefficient (\(2 N_e s\)), or list of selection
coefficients if more than one population.

	h (float or list of floats, optional) – The dominance coefficient, or list of dominance coefficients in
each population, if more than one population.

	m (array-like, optional) – The migration rates matrix as a 2-D array with shape nxn,
where n is the number of populations. The entry of the migration
matrix m[i,j] is the migration rate from pop j to pop i in genetic
units, that is, normalized by \(2N_e\). m may be either a
2-D array, or a function that returns a 2-D array (with dimensions
equal to (num pops)x(num pops)).

	theta (float, optional) – The scaled mutation rate \(4 N_e u\), which defaults to 1.
theta can be used in the reversible model in the case of symmetric
mutation rates. In this case, theta must be set to << 1.

	adapt_dt (bool, optional) – flag to allow dt correction avoiding negative entries.

	finite_genome (bool, optional) – If True, simulate under the finite-genome model with
reversible mutations. If using this model, we can specify the forward
and backward mutation rates, which are per-base rates that are not
scaled by number of mutable loci. If theta_fd and theta_bd
are not specified, we assume equal forward and backward mutation rates
provided by theta, which must be set to less that 1.
Defaults to False.

	theta_fd (float, optional) – The forward mutation rate \(4 Ne u\).

	theta_bd (float, optional) – The backward mutation rate \(4 Ne v\).

	frozen (list of bools) – Specifies the populations that are “frozen”, meaning
samples from that population no longer change due or contribute
to migration to other populations. This feature is most often
used to indicate ancient samples, for example, ancient DNA.
The frozen parameter is given as a list of same length
as number of pops, with True for frozen
populations at the corresponding index, and False for
populations that continue to evolve.

	
log()

	Returns the natural logarithm of the entries of the frequency spectrum.

Only necessary because np.ma.log now fails to propagate extra
attributes after np 1.10.

	
marginalize(over, mask_corners=None)

	Reduced dimensionality spectrum summing over the set of populations
given by over.

marginalize does not act in-place, so the input frequency spectrum
will not be altered.

	Parameters:

	
	over (list of integers) – List of axes to sum over. For example (0,2) will marginalize
populations 0 and 2.

	mask_corners (bool, optional) – If True, the fixed bins of the resulting spectrum will be
masked. The default behavior is to mask the corners only if at least one
of the corners of the input frequency spectrum is masked. If either
corner is masked, the output frequency spectrum masks the fixed bins.

	
mask_corners()

	Mask the ‘seen in 0 samples’ and ‘seen in all samples’ entries.

	
pi()

	Returns the estimated expected number of pairwise differences between two
chromosomes in the population.

Note

This estimate includes a factor of sample_size / (sample_size - 1)
to make \(\mathbb{E}[\pi] = \theta\).

	
project(ns)

	Project to smaller sample size.

project does not act in-place, so that the input frequency
spectrum is not changed.

	Parameters:

	ns (list of integers) – Sample sizes for new spectrum.

	
pulse_migrate(idx_from, idx_to, keep_from, proportion)

	Mass migration (pulse admixture) between two existing populations. The
target (destination) population has the same number of lineages in the
output SFS, and the source population has keep_from number of lineages
after the pulse event. The proportion is the expected ancestry proportion
in the target population that comes from the source population.

This serves as a wrapper for Manips.admix_inplace.

Depending on the proportion and number of lineages, because this is an
approximate operation, we often need a large number of lineages from
the source population to maintain accuracy.

	Parameters:

	
	idx_from (int) – Index of source population.

	idx_to (int) – Index of targeet population.

	keep_from (int) – Number of lineages to keep in source population.

	proportion (float) – Ancestry proportion of source population that migrates
to target population.

	
sample()

	Generate a Poisson-sampled fs from the current one.

Entries where the current fs is masked or 0 will be masked in the
output sampled fs.

	
scramble_pop_ids(mask_corners=True)

	Spectrum corresponding to scrambling individuals among populations.

This is useful for assessing how diverged populations are.
Essentially, it pools all the individuals represented in the fs and
generates new populations of random individuals (without replacement)
from that pool. If this fs is significantly different from the
original, that implies population structure.

	
split(idx, n0, n1, new_ids=None)

	Splits a population in the SFS into two populations, with the extra
population placed at the end. Returns a new frequency spectrum.

	Parameters:

	
	idx (int) – The index of the population to split.

	n0 (int) – The sample size of the first split population.

	n1 (int) – The sample size of the second split population.

	new_ids (list of strings, optional) – The population IDs of the split populations. Can only be
used if pop_ids are given for the input spectrum.

	
swap_axes(ax1, ax2)

	Uses np’s swapaxes function, but also swaps pop_ids as appropriate
if pop_ids are given.

Note

fs.swapaxes(ax1, ax2) will still work, but if population
ids are given, it won’t swap the pop_ids entries as expected.

	Parameters:

	
	ax1 (int) – The index of the first population to swap.

	ax2 (int) – The index of the second population to swap.

	
theta_L()

	Returns theta_L as defined by Zeng et al. “Statistical Tests for Detecting
Positive Selection by Utilizing High-Frequency Variants” (2006)
Genetics

Note

This function is only sensible for 1-dimensional spectra.

	
to_file(fid, precision=16, comment_lines=[], foldmaskinfo=True)

	Write frequency spectrum to file.

The file format is:

	Any number of comment lines beginning with a ‘#’

	A single line containing N integers giving the dimensions of the fs
array. So this line would be ‘5 5 3’ for an SFS that was 5x5x3.
(That would be 4x4x2 samples.)

	On the same line, the string ‘folded’ or ‘unfolded’ denoting the
folding status of the array

	On the same line, optional strings each containing the population
labels in quotes separated by spaces, e.g. “pop 1” “pop 2”

	A single line giving the array elements. The order of elements is
e.g.: fs[0,0,0] fs[0,0,1] fs[0,0,2] … fs[0,1,0] fs[0,1,1] …

	A single line giving the elements of the mask in the same order as
the data line. ‘1’ indicates masked, ‘0’ indicates unmasked.

	Parameters:

	
	fid (string) – string with file name to write to or an open file object.

	precision (int, optional) – precision with which to write out entries of the SFS. (They
are formated via %.<p>g, where <p> is the precision.) Defaults to 16.

	comment_lines (list of strings, optional) – list of strings to be used as comment lines in the header
of the output file.

	foldmaskinfo (bool, optional) – If False, folding and mask and population label
information will not be saved.

	
tofile(fid, precision=16, comment_lines=[], foldmaskinfo=True)

	Write frequency spectrum to file.

The file format is:

	Any number of comment lines beginning with a ‘#’

	A single line containing N integers giving the dimensions of the fs
array. So this line would be ‘5 5 3’ for an SFS that was 5x5x3.
(That would be 4x4x2 samples.)

	On the same line, the string ‘folded’ or ‘unfolded’ denoting the
folding status of the array

	On the same line, optional strings each containing the population
labels in quotes separated by spaces, e.g. “pop 1” “pop 2”

	A single line giving the array elements. The order of elements is
e.g.: fs[0,0,0] fs[0,0,1] fs[0,0,2] … fs[0,1,0] fs[0,1,1] …

	A single line giving the elements of the mask in the same order as
the data line. ‘1’ indicates masked, ‘0’ indicates unmasked.

	Parameters:

	
	fid (string) – string with file name to write to or an open file object.

	precision (int, optional) – precision with which to write out entries of the SFS. (They
are formated via %.<p>g, where <p> is the precision.) Defaults to 16.

	comment_lines (list of strings, optional) – list of strings to be used as comment lines in the header
of the output file.

	foldmaskinfo (bool, optional) – If False, folding and mask and population label
information will not be saved.

	
unfold()

	Returns an unfolded frequency spectrum.

It is assumed that each state of a SNP is equally likely to be
ancestral.

Unfolding is not done in-place. The return value is a new Spectrum object.

	
unmask_all()

	Unmask all entires of the frequency spectrum.

Miscellaneous functions

	
moments.Misc.perturb_params(params, fold=1, lower_bound=None, upper_bound=None)

	Generate a perturbed set of parameters. Each element of params is randomly
perturbed fold factors of 2 up or down.

	Parameters:

	
	fold (float, optional) – Number of factors of 2 to perturb by, defaults to 1.

	lower_bound (list of floats, optional) – If not None, the resulting parameter set is adjusted
to have all value greater than lower_bound.

	upper_bound (list of floats, optional) – If not None, the resulting parameter set is adjusted
to have all value less than upper_bound.

	
moments.Misc.make_data_dict_vcf(vcf_filename, popinfo_filename, filter=True, flanking_info=[None, None], skip_multiallelic=True)

	Parse a VCF file containing genomic sequence information, along with a file
identifying the population of each sample, and store the information in
a properly formatted dictionary.

Each file may be zipped (.zip) or gzipped (.gz). If a file is zipped,
it must be the only file in the archive, and the two files cannot be zipped
together. Both files must be present for the function to work.

	Parameters:

	
	vcf_filename (str) – Name of VCF file to work with. The function currently works
for biallelic SNPs only, so if REF or ALT is anything other
than a single base pair (A, C, T, or G), the allele will be
skipped. Additionally, genotype information must be present
in the FORMAT field GT, and genotype info must be known for
every sample, else the SNP will be skipped. If the ancestral
allele is known it should be specified in INFO field ‘AA’.
Otherwise, it will be set to ‘-‘.

	popinfo_filename (str) – Name of file containing the population assignments for
each sample in the VCF. If a sample in the VCF file does
not have a corresponding entry in this file, it will be
skipped. See _get_popinfo for information on how this
file must be formatted.

	filter (bool, optional) – If set to True, alleles will be skipped if they have not passed
all filters (i.e. either ‘PASS’ or ‘.’ must be present in FILTER column.

	flanking_info (list of strings, optional) – Flanking information for the reference and/or ancestral
allele can be provided as field(s) in the INFO column. To
add this information to the dict, flanking_info should
specify the names of the fields that contain this info as a
list (e.g. [‘RFL’, ‘AFL’].) If context info is given for
only one allele, set the other item in the list to None,
(e.g. [‘RFL’, None]). Information can be provided as a 3
base-pair sequence or 2 base-pair sequence, where the first
base-pair is the one immediately preceding the SNP, and the
last base-pair is the one immediately following the SNP.

	skip_multiallelic (bool, optional) – If True, only keep biallelic sites, and skip sites that
have more than one ALT allele.

	
moments.Misc.count_data_dict(data_dict, pop_ids)

	Summarize data in data_dict by mapping SNP configurations to counts.

Returns a dictionary with keys (successful_calls, derived_calls,
polarized) mapping to counts of SNPs. Here successful_calls is a tuple
with the number of good calls per population, derived_calls is a tuple
of derived calls per pop, and polarized indicates whether that SNP was
polarized using an ancestral state.

	Parameters:

	
	data_dict (data dictionary) – data_dict formatted as in Misc.make_data_dict

	pop_ids (list of strings) – IDs of populations to collect data for

	
moments.Misc.bootstrap(data_dict, pop_ids, projections, mask_corners=True, polarized=True, bed_filename=None, num_boots=100, save_dir=None)

	Use a non-parametric bootstrap on SNP information contained in a dictionary
to generate new data sets. The new data is created by sampling with
replacement from independent units of the original data. These units can
simply be chromosomes, or they can be regions specified in a BED file.

This function either returns a list of all the newly created SFS, or writes
them to disk in a specified directory.

See moments.Spectrum.from_data_dict() for more details about the options for
creating spectra.

	Parameters:

	
	data_dict (dict of SNP information) – Dictionary containing properly formatted SNP information (i.e.
created using one of the make_data_dict methods).

	pop_ids (list of strings) – List of population IDs.

	projections (list of ints) – Projection sizes for the given population IDs.

	mask_corners (bool, optional) – If True, mask the invariant bins of the SFS.

	polarized (bool, optional) – If True, we assume we know the ancestral allele. If False,
return folded spectra.

	bed_filename (string as path to bed file) – If None, chromosomes will be used as the units for
resampling. Otherwise, this should be the filename of a BED
file specifying the regions to be used as resampling units.
Chromosome names must be consistent between the BED file and
the data dictionary, or bootstrap will not work. For example,
if an entry in the data dict has ID X_Y, then the value in
in the chromosome field of the BED file must also be X (not
chrX, chromosomeX, etc.).
If the name field is provided in the BED file, then any
regions with the same name will be considered to be part of
the same unit. This may be useful for sampling as one unit a
gene that is located across non-continuous regions.

	num_boots (int, optional) – Number of resampled SFS to generate.

	save_dir (str, optional) – If None, the SFS are returned as a list. Otherwise this should be
a string specifying the name of a new directory under which all
of the new SFS should be saved.

Demographic functions

Single-population demographic models.

	
moments.Demographics1D.bottlegrowth(params, ns, pop_ids=None)

	Instantanous size change followed by exponential growth.

params = (nuB, nuF, T)

	Parameters:

	
	params – Tuple of length three specifying (nuB, nuF, T).

	nuB: Ratio of population size after instantanous change to ancient
population size.

	nuF: Ratio of contemporary to ancient population size.

	T: Time in the past at which instantaneous change happened and growth began
(in units of 2*Na generations).

	ns – Number of samples in resulting Spectrum.

	pop_ids – Optional list of length one specifying the population ID.

	
moments.Demographics1D.growth(params, ns, pop_ids=None)

	Exponential growth beginning some time ago.

params = (nu, T)

	Parameters:

	
	params – Tupe of length two, specifying (nu, t).

	nu: the final population size.

	T: the time in the past at which growth began
(in units of 2*Ne generations).

	ns – Number of samples in resulting Spectrum. Must be a list of
length one.

	pop_ids – Optional list of length one specifying the population ID.

	
moments.Demographics1D.snm(ns, pop_ids=None)

	Standard neutral model with theta=1.

	Parameters:

	
	ns – Number of samples in resulting Spectrum. Must be a list
of length one.

	pop_ids – Optional list of length one specifying the population ID.

	
moments.Demographics1D.three_epoch(params, ns, pop_ids=None)

	Three epoch model of constant sizes.

params = (nuB, nuF, TB, TF)

	Parameters:

	
	params – Tuple of length four specifying (nuB, nuF, TB, TF).

	nuB: Ratio of bottleneck population size to ancient pop size.

	nuF: Ratio of contemporary to ancient pop size.

	TB: Length of bottleneck (in units of 2*Na generations).

	TF: Time since bottleneck recovery (in units of 2*Na generations).

	ns – Number of samples in resulting Spectrum.

	pop_ids – Optional list of length one specifying the population ID.

	
moments.Demographics1D.two_epoch(params, ns, pop_ids=None)

	Instantaneous size change some time ago.

params = (nu, T)

	Parameters:

	
	params – Tuple of length two, specifying (nu, T).

	nu: the ratio of contemporary to ancient population size.

	T: the time in the past at which size change happened
(in units of 2*Ne generations).

	ns – Number of samples in resulting Spectrum. Must be a list of
length one.

	pop_ids – Optional list of length one specifying the population ID.

Two-population demographic models.

	
moments.Demographics2D.IM(params, ns, pop_ids=None)

	Isolation-with-migration model with exponential pop growth.

params = (s, nu1, nu2, T, m12, m21)

ns = [n1, n2]

	Parameters:

	
	params – Tuple of length 6.

	s: Size of pop 1 after split. (Pop 2 has size 1-s.)

	nu1: Final size of pop 1.

	nu2: Final size of pop 2.

	T: Time in the past of split (in units of 2*Na generations)

	m12: Migration from pop 2 to pop 1 (2 * Na * m12)

	m21: Migration from pop 1 to pop 2

	ns – List of population sizes in first and second populations.

	pop_ids – List of population IDs.

	
moments.Demographics2D.IM_pre(params, ns, pop_ids=None)

	params = (nuPre, TPre, s, nu1, nu2, T, m12, m21)

ns = [n1, n2]

Isolation-with-migration model with exponential pop growth and a size change
prior to split.

	nuPre: Size after first size change

	TPre: Time before split of first size change.

	s: Fraction of nuPre that goes to pop1. (Pop 2 has size nuPre*(1-s).)

	nu1: Final size of pop 1.

	nu2: Final size of pop 2.

	T: Time in the past of split (in units of 2*Na generations)

	m12: Migration from pop 2 to pop 1 (2*Na*m12)

	m21: Migration from pop 1 to pop 2

	n1, n2: Sample sizes of resulting Spectrum.

	Parameters:

	
	ns – List of population sizes in first and second populations.

	pop_ids – List of population IDs.

	
moments.Demographics2D.bottlegrowth(params, ns, pop_ids=None)

	params = (nuB, nuF, T)

ns = [n1, n2]

Instantanous size change followed by exponential growth with no population
split.

	nuB: Ratio of population size after instantanous change to ancient
population size

	nuF: Ratio of contempoary to ancient population size

	T: Time in the past at which instantaneous change happened and growth began
(in units of 2*Na generations)

	n1, n2: Sample sizes of resulting Spectrum.

	Parameters:

	
	params – List of parameters, (nuB, nuF, T).

	ns – List of population sizes in first and second populations.

	pop_ids – List of population IDs.

	
moments.Demographics2D.bottlegrowth_split(params, ns, pop_ids=None)

	params = (nuB, nuF, T, Ts)

ns = [n1, n2]

Instantanous size change followed by exponential growth then split.

	nuB: Ratio of population size after instantanous change to ancient
population size

	nuF: Ratio of contempoary to ancient population size

	T: Time in the past at which instantaneous change happened and growth began
(in units of 2*Na generations)

	Ts: Time in the past at which the two populations split.

	n1, n2: Sample sizes of resulting Spectrum.

	Parameters:

	
	ns – List of population sizes in first and second populations.

	pop_ids – List of population IDs.

	
moments.Demographics2D.bottlegrowth_split_mig(params, ns, pop_ids=None)

	params = (nuB, nuF, m, T, Ts)
ns = [n1, n2]

Instantanous size change followed by exponential growth then split with
migration.

	nuB: Ratio of population size after instantanous change to ancient
population size

	nuF: Ratio of contempoary to ancient population size

	m: Migration rate between the two populations (2*Na*m).

	T: Time in the past at which instantaneous change happened and growth began
(in units of 2*Na generations)

	Ts: Time in the past at which the two populations split.

	n1, n2: Sample sizes of resulting Spectrum.

	Parameters:

	
	ns – List of population sizes in first and second populations.

	pop_ids – List of population IDs.

	
moments.Demographics2D.snm(ns, pop_ids=None)

	ns = [n1, n2]

Standard neutral model with a split but no divergence.

	Parameters:

	
	ns – List of population sizes in first and second populations.

	pop_ids – List of population IDs.

	
moments.Demographics2D.split_mig(params, ns, pop_ids=None)

	Split into two populations of specifed size, with migration.

params = (nu1, nu2, T, m)

ns = [n1, n2]

	Parameters:

	
	params – Tuple of length 4.

	nu1: Size of population 1 after split.

	nu2: Size of population 2 after split.

	T: Time in the past of split (in units of 2*Na generations)

	m: Migration rate between populations (2*Na*m)

	ns – List of length two specifying sample sizes n1 and n2.

	pop_ids – List of population IDs.

Three-population demographic models.

	
moments.Demographics3D.out_of_Africa(params, ns, pop_ids=['YRI', 'CEU', 'CHB'])

	The Gutenkunst et al (2009) out-of-Africa that has been reinferred a
number of times.

	Parameters:

	
	params (list of floats) – List of parameters, in the order (nuA, TA, nuB, TB, nuEu0,
nuEuF, nuAs0, nuAsF, TF, mAfB, mAfEu, mAfAs, mEuAs).

	ns (list of ints) – List of population sizes in each population, in order given
by pop_ids.

	pop_ids (list of strings, optional) – List of population IDs, defaults to [“YRI”, “CEU”, “CHB”].

Inference functions

	
moments.Inference.ll(model, data)

	The log-likelihood of the data given the model sfs.

Evaluate the log-likelihood of the data given the model. This is based on
Poisson statistics, where the probability of observing k entries in a cell
given that the mean number is given by the model is
\(P(k) = exp(-model) * model^k / k!\).

Note: If either the model or the data is a masked array, the return ll will
ignore any elements that are masked in either the model or the data.

	Parameters:

	
	model – The model Spectrum object.

	data – The data Spectrum object, with same size as model.

	
moments.Inference.ll_multinom(model, data)

	Log-likelihood of the data given the model, with optimal rescaling.

Evaluate the log-likelihood of the data given the model. This is based on
Poisson statistics, where the probability of observing k entries in a cell
given that the mean number is given by the model is
\(P(k) = exp(-model) * model^k / k!\).

model is optimally scaled to maximize ll before calculation.

Note: If either the model or the data is a masked array, the return ll will
ignore any elements that are masked in either the model or the data.

	Parameters:

	
	model – The model Spectrum object.

	data – The data Spectrum object, with same size as model.

	
moments.Inference.optimal_sfs_scaling(model, data)

	Optimal multiplicative scaling factor between model and data.

This scaling is based on only those entries that are masked in neither
model nor data.

	Parameters:

	
	model – The model Spectrum object.

	data – The data Spectrum object, with same size as model.

	
moments.Inference.optimally_scaled_sfs(model, data)

	Optimially scale model sfs to data sfs.

Returns a new scaled model sfs.

	Parameters:

	
	model – The model Spectrum object.

	data – The data Spectrum object, with same size as model.

	
moments.Inference.linear_Poisson_residual(model, data, mask=None)

	Return the Poisson residuals, (model - data)/sqrt(model), of model and data.

mask sets the level in model below which the returned residual array is
masked. The default of 0 excludes values where the residuals are not
defined.

In the limit that the mean of the Poisson distribution is large, these
residuals are normally distributed. (If the mean is small, the Anscombe
residuals are better.)

	Parameters:

	
	model – The model Spectrum object.

	data – The data Spectrum object, with same size as model.

	mask – Optional mask, with same size as model.

	
moments.Inference.Anscombe_Poisson_residual(model, data, mask=None)

	Return the Anscombe Poisson residuals between model and data.

mask sets the level in model below which the returned residual array is
masked. This excludes very small values where the residuals are not normal.
1e-2 seems to be a good default for the NIEHS human data. (model = 1e-2,
data = 0, yields a residual of ~1.5.)

Residuals defined in this manner are more normally distributed than the
linear residuals when the mean is small. See this reference below for
justification: Pierce DA and Schafer DW, “Residuals in generalized linear
models” Journal of the American Statistical Association, 81(396)977-986
(1986).

Note that I tried implementing the “adjusted deviance” residuals, but they
always looked very biased for the cases where the data was 0.

	Parameters:

	
	model – The model Spectrum object.

	data – The data Spectrum object, with same size as model.

	mask – Optional mask, with same size as model.

	
moments.Inference.optimize_log(p0, data, model_func, lower_bound=None, upper_bound=None, verbose=0, flush_delay=0.5, epsilon=0.001, gtol=1e-05, multinom=True, maxiter=None, full_output=False, func_args=[], func_kwargs={}, fixed_params=None, ll_scale=1, output_file=None)

	Optimize log(params) to fit model to data using the BFGS method. This optimization
method works well when we start reasonably close to the optimum.

Because this works in log(params), it cannot explore values of params < 0.
However, it should perform well when parameters range over different orders
of magnitude.

	Parameters:

	
	p0 – Initial parameters.

	data – Data SFS.

	model_func – Function to evaluate model spectrum. Should take arguments
model_func(params, (n1,n2...)).

	lower_bound – Lower bound on parameter values. If not None, must be of same
length as p0.

	upper_bound – Upper bound on parameter values. If not None, must be of same
length as p0.

	verbose – If > 0, print optimization status every verbose steps.

	output_file – Stream verbose output into this filename. If None, stream to
standard out.

	flush_delay – Standard output will be flushed once every <flush_delay>
minutes. This is useful to avoid overloading I/O on clusters.

	epsilon – Step-size to use for finite-difference derivatives.

	gtol – Convergence criterion for optimization. For more info,
see help(scipy.optimize.fmin_bfgs)

	multinom – If True, do a multinomial fit where model is optimially scaled to
data at each step. If False, assume theta is a parameter and do
no scaling.

	maxiter – Maximum iterations to run for.

	full_output – If True, return full outputs as in described in
help(scipy.optimize.fmin_bfgs)

	func_args – Additional arguments to model_func. It is assumed that
model_func’s first argument is an array of parameters to
optimize, that its second argument is an array of sample sizes
for the sfs, and that its last argument is the list of grid
points to use in evaluation.
Using func_args.
For example, you could define your model function as
def func((p1,p2), ns, f1, f2):
If you wanted to fix f1=0.1 and f2=0.2 in the optimization, you
would pass func_args = [0.1,0.2] (and ignore the fixed_params
argument).

	func_kwargs – Additional keyword arguments to model_func.

	fixed_params – If not None, should be a list used to fix model parameters at
particular values. For example, if the model parameters
are (nu1,nu2,T,m), then fixed_params = [0.5,None,None,2]
ll hold nu1=0.5 and m=2. The optimizer will only change
T and m. Note that the bounds lists must include all
parameters. Optimization will fail if the fixed values
lie outside their bounds. A full-length p0 should be passed
in; values corresponding to fixed parameters are ignored.
For example, suppose your model function is
def func((p1,f1,p2,f2), ns): ...
If you wanted to fix f1=0.1 and f2=0.2 in the optimization,
you would pass fixed_params = [None,0.1,None,0.2] (and ignore
the func_args argument).

	ll_scale – The bfgs algorithm may fail if your initial log-likelihood is
too large. (This appears to be a flaw in the scipy
implementation.) To overcome this, pass ll_scale > 1, which will
simply reduce the magnitude of the log-likelihood. Once in a
region of reasonable likelihood, you’ll probably want to
re-optimize with ll_scale=1.

	
moments.Inference.optimize_log_fmin(p0, data, model_func, lower_bound=None, upper_bound=None, verbose=0, flush_delay=0.5, multinom=True, maxiter=None, maxfun=None, full_output=False, func_args=[], func_kwargs={}, fixed_params=None, output_file=None)

	Optimize log(params) to fit model to data using Nelder-Mead.
This optimization method may work better than BFGS when far from a
minimum. It is much slower, but more robust, because it doesn’t use
gradient information.

Because this works in log(params), it cannot explore values of params < 0.
It should also perform better when parameters range over large scales.

	Parameters:

	
	p0 – Initial parameters.

	data – Spectrum with data.

	model_function – Function to evaluate model spectrum. Should take arguments
(params, (n1,n2…))

	lower_bound – Lower bound on parameter values. If not None, must be of same
length as p0. A parameter can be declared unbound by assigning
a bound of None.

	upper_bound – Upper bound on parameter values. If not None, must be of same
length as p0. A parameter can be declared unbound by assigning
a bound of None.

	verbose – If True, print optimization status every <verbose> steps.

	output_file – Stream verbose output into this filename. If None, stream to
standard out.

	flush_delay – Standard output will be flushed once every <flush_delay>
minutes. This is useful to avoid overloading I/O on clusters.

	multinom – If True, do a multinomial fit where model is optimially scaled to
data at each step. If False, assume theta is a parameter and do
no scaling.

	maxiter – Maximum number of iterations to run optimization.

	maxfun – Maximum number of objective function calls to perform.

	full_output – If True, return full outputs as in described in
help(scipy.optimize.fmin_bfgs)

	func_args – Additional arguments to model_func. It is assumed that
model_func’s first argument is an array of parameters to
optimize, that its second argument is an array of sample sizes
for the sfs, and that its last argument is the list of grid
points to use in evaluation.

	func_kwargs – Additional keyword arguments to model_func.

	fixed_params – If not None, should be a list used to fix model parameters at
particular values. For example, if the model parameters
are (nu1,nu2,T,m), then fixed_params = [0.5,None,None,2]
will hold nu1=0.5 and m=2. The optimizer will only change
T and m. Note that the bounds lists must include all
parameters. Optimization will fail if the fixed values
lie outside their bounds. A full-length p0 should be passed
in; values corresponding to fixed parameters are ignored.

	
moments.Inference.optimize_log_powell(p0, data, model_func, lower_bound=None, upper_bound=None, verbose=0, flush_delay=0.5, multinom=True, maxiter=None, full_output=False, func_args=[], func_kwargs={}, fixed_params=None, output_file=None)

	Optimize log(params) to fit model to data using Powell’s conjugate direction method.

This method works without calculating any derivatives, and optimizes along
one direction at a time. May be useful as an initial search for an approximate
solution, followed by further optimization using a gradient optimizer.

Because this works in log(params), it cannot explore values of params < 0.

	Parameters:

	
	p0 – Initial parameters.

	data – Spectrum with data.

	model_function – Function to evaluate model spectrum. Should take arguments
(params, (n1,n2…))

	lower_bound – Lower bound on parameter values. If not None, must be of same
length as p0. A parameter can be declared unbound by assigning
a bound of None.

	upper_bound – Upper bound on parameter values. If not None, must be of same
length as p0. A parameter can be declared unbound by assigning
a bound of None.

	verbose – If True, print optimization status every <verbose> steps.
output_file: Stream verbose output into this filename. If None, stream to
standard out.

	flush_delay – Standard output will be flushed once every <flush_delay>
minutes. This is useful to avoid overloading I/O on clusters.
multinom: If True, do a multinomial fit where model is optimially scaled to
data at each step. If False, assume theta is a parameter and do
no scaling.

	maxiter – Maximum iterations to run for.

	full_output – If True, return full outputs as in described in
help(scipy.optimize.fmin_bfgs)

	func_args – Additional arguments to model_func. It is assumed that
model_func’s first argument is an array of parameters to
optimize, that its second argument is an array of sample sizes
for the sfs, and that its last argument is the list of grid
points to use in evaluation.

	func_kwargs – Additional keyword arguments to model_func.

	fixed_params – If not None, should be a list used to fix model parameters at
particular values. For example, if the model parameters
are (nu1,nu2,T,m), then fixed_params = [0.5,None,None,2]
will hold nu1=0.5 and m=2. The optimizer will only change
T and m. Note that the bounds lists must include all
parameters. Optimization will fail if the fixed values
lie outside their bounds. A full-length p0 should be passed
in; values corresponding to fixed parameters are ignored.
(See help(moments.Inference.optimize_log for examples of func_args and
fixed_params usage.)

	
moments.Inference.optimize_log_lbfgsb(p0, data, model_func, lower_bound=None, upper_bound=None, verbose=0, flush_delay=0.5, epsilon=0.001, pgtol=1e-05, multinom=True, maxiter=100000.0, full_output=False, func_args=[], func_kwargs={}, fixed_params=None, ll_scale=1, output_file=None)

	Optimize log(params) to fit model to data using the L-BFGS-B method.

This optimization method works well when we start reasonably close to the
optimum. It is best at burrowing down a single minimum. This method is
better than optimize_log if the optimum lies at one or more of the
parameter bounds. However, if your optimum is not on the bounds, this
method may be much slower.

Because this works in log(params), it cannot explore values of params < 0.
It should also perform better when parameters range over scales.

The L-BFGS-B method was developed by Ciyou Zhu, Richard Byrd, and Jorge
Nocedal. The algorithm is described in:

	R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
Constrained Optimization, (1995), SIAM Journal on Scientific and
Statistical Computing , 16, 5, pp. 1190-1208.

	C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
FORTRAN routines for large scale bound constrained optimization (1997),
ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550-560.

	Parameters:

	
	p0 – Initial parameters.

	data – Spectrum with data.

	model_function – Function to evaluate model spectrum. Should take arguments
(params, (n1,n2…))

	lower_bound – Lower bound on parameter values. If not None, must be of same
length as p0. A parameter can be declared unbound by assigning
a bound of None.

	upper_bound – Upper bound on parameter values. If not None, must be of same
length as p0. A parameter can be declared unbound by assigning
a bound of None.

	verbose – If > 0, print optimization status every <verbose> steps.

	output_file – Stream verbose output into this filename. If None, stream to
standard out.

	flush_delay – Standard output will be flushed once every <flush_delay>
minutes. This is useful to avoid overloading I/O on clusters.

	epsilon – Step-size to use for finite-difference derivatives.

	pgtol – Convergence criterion for optimization. For more info,
see help(scipy.optimize.fmin_l_bfgs_b)

	multinom – If True, do a multinomial fit where model is optimially scaled to
data at each step. If False, assume theta is a parameter and do
no scaling.

	maxiter – Maximum algorithm iterations to run.

	full_output – If True, return full outputs as in described in
help(scipy.optimize.fmin_bfgs)

	func_args – Additional arguments to model_func. It is assumed that
model_func’s first argument is an array of parameters to
optimize, that its second argument is an array of sample sizes
for the sfs, and that its last argument is the list of grid
points to use in evaluation.

	func_kwargs – Additional keyword arguments to model_func.

	fixed_params – If not None, should be a list used to fix model parameters at
particular values. For example, if the model parameters
are (nu1,nu2,T,m), then fixed_params = [0.5,None,None,2]
will hold nu1=0.5 and m=2. The optimizer will only change
T and m. Note that the bounds lists must include all
parameters. Optimization will fail if the fixed values
lie outside their bounds. A full-length p0 should be passed
in; values corresponding to fixed parameters are ignored.

	ll_scale – The bfgs algorithm may fail if your initial log-likelihood is
too large. (This appears to be a flaw in the scipy
implementation.) To overcome this, pass ll_scale > 1, which will
simply reduce the magnitude of the log-likelihood. Once in a
region of reasonable likelihood, you’ll probably want to
re-optimize with ll_scale=1.

Uncertainty functions

Parameter uncertainties and likelihood ratio tests using Godambe information.

	
moments.Godambe.FIM_uncert(func_ex, p0, data, log=False, multinom=True, eps=0.01)

	Parameter uncertainties from Fisher Information Matrix.
Returns standard deviations of parameter values.

	Parameters:

	
	func_ex (demographic model) – Model function

	p0 (list-like) – Best-fit parameters for func_ex

	data (spectrum object) – Original data frequency spectrum

	log (bool) – If True, assume log-normal distribution of parameters.
Returned values are then the standard deviations of the logs
of the parameter values, which can be interpreted as relative
parameter uncertainties.

	multinom (bool) – If True, assume model is defined without an explicit
parameter for theta. Because uncertainty in theta must be accounted
for to get correct uncertainties for other parameters, this function
will automatically consider theta if multinom=True. In that case, the
final entry of the returned uncertainties will correspond to theta.

	eps (float) – Fractional stepsize to use when taking
finite-difference derivatives

	
moments.Godambe.GIM_uncert(func_ex, all_boot, p0, data, log=False, multinom=True, eps=0.01, return_GIM=False)

	Parameter uncertainties from Godambe Information Matrix (GIM).
Returns standard deviations of parameter values. Bootstrap data
is typically generated by splitting the genome into N chunks and
sampling with replacement from those chunks N times.

	Parameters:

	
	func_ex (demographic model) – Model function

	all_boot (list of spectra) – List of bootstrap frequency spectra

	p0 (list-like) – Best-fit parameters for func_ex

	data (spectrum object) – Original data frequency spectrum

	log (bool) – If True, assume log-normal distribution of parameters.
Returned values are then the standard deviations of the logs
of the parameter values, which can be interpreted as relative
parameter uncertainties.

	multinom (bool) – If True, assume model is defined without an explicit
parameter for theta. Because uncertainty in theta must be accounted
for to get correct uncertainties for other parameters, this function
will automatically consider theta if multinom=True. In that case, the
final entry of the returned uncertainties will correspond to
theta.

	eps (float) – Fractional stepsize to use when taking finite-difference derivatives

	return_GIM – If True, also return the full GIM.

	
moments.Godambe.LRT_adjust(func_ex, all_boot, p0, data, nested_indices, multinom=True, eps=0.01)

	First-order moment matching adjustment factor for likelihood ratio test.

	Parameters:

	
	func_ex (demographic model) – Model function for complex model

	all_boot (list of spectra) – List of bootstrap frequency spectra

	p0 (list-like) – Best-fit parameters for the simple model, with nested parameter
explicity defined. Although equal to values for simple model, should
be in a list form that can be taken in by the complex model you’d like
to evaluate.

	data (spectrum object) – Original data frequency spectrum

	nested_indices (list of ints) – List of positions of nested parameters in complex model
parameter list

	multinom (bool) – If True, assume model is defined without an explicit parameter
for theta. Because uncertainty in theta must be accounted for to get
correct uncertainties for other parameters, this function will
automatically consider theta if multinom=True.

	eps (float) – Fractional stepsize to use when taking finite-difference derivatives

Plotting features

Single-population plotting

	
moments.Plotting.plot_1d_comp_Poisson(model, data, fig_num=None, residual='Anscombe', plot_masked=False, out=None, show=True, labels=['Model', 'Data'])

	Poisson comparison between 1d model and data.

	Parameters:

	
	model – 1-dimensional model SFS

	data – 1-dimensional data SFS

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	plot_masked – Additionally plots (in open circles) results for points in the
model or data that were masked.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	labels – A list of strings of length two, labels for the first and second
input frequency spectra. Defaults to “Model” and “Data”.

	
moments.Plotting.plot_1d_comp_multinom(model, data, fig_num=None, residual='Anscombe', plot_masked=False, out=None, show=True, labels=['Model', 'Data'])

	Multinomial comparison between 1d model and data.

	Parameters:

	
	model – 1-dimensional model SFS

	data – 1-dimensional data SFS

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	plot_masked – Additionally plots (in open circles) results for points in the
model or data that were masked.

	out – Output filename to save figure, if given.

	show – If True, displays figure. Set to False to supress.

	
moments.Plotting.plot_1d_fs(fs, fig_num=None, show=True, ax=None, out=None, ms=3, lw=1)

	Plot a 1-dimensional frequency spectrum.

Note that all the plotting is done with pylab. To see additional pylab
methods: “import pylab; help(pylab)”. Pylab’s many functions are documented
at http://matplotlib.sourceforge.net/contents.html

	Parameters:

	
	fs – A single-population Spectrum

	fig_num – If used, clear and use figure fig_num for display.
If None, a new figure window is created.

	show – If True, execute pylab.show command to make sure plot displays.

	ax – If None, uses new or specified figure. Otherwise plots in axes object
that is given after clearing.

	out – If file name is given, saves before showing.

Multi-population plotting

	
moments.Plotting.plot_2d_comp_Poisson(model, data, vmin=None, vmax=None, resid_range=None, fig_num=None, pop_ids=None, residual='Anscombe', adjust=True, out=None, show=True)

	Poisson comparison between 2d model and data.

	Parameters:

	
	model – 2-dimensional model SFS

	data – 2-dimensional data SFS

	vmin – Minimum value plotted.

	vmax – Maximum value plotted.

	resid_range – Residual plot saturates at +- resid_range.

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	adjust – Should method use automatic ‘subplots_adjust’? For advanced
manipulation of plots, it may be useful to make this False.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_2d_comp_multinom(model, data, vmin=None, vmax=None, resid_range=None, fig_num=None, pop_ids=None, residual='Anscombe', adjust=True, out=None, show=True)

	Multinomial comparison between 2d model and data.

	Parameters:

	
	model – 2-dimensional model SFS

	data – 2-dimensional data SFS

	vmin – Minimum value plotted.

	vmax – Maximum value plotted.

	resid_range – Residual plot saturates at +- resid_range.

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	adjust – Should method use automatic ‘subplots_adjust’? For advanced
manipulation of plots, it may be useful to make this False.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_2d_resid(resid, resid_range=None, ax=None, pop_ids=None, extend='neither', colorbar=True, out=None, show=True)

	Linear heatmap of 2d residual array.

	Parameters:

	
	sfs – Residual array to plot.

	resid_range – Values > resid range or < resid_range saturate the color
spectrum.

	ax – Axes object to plot into. If None, the result of pylab.gca() is used.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	extend – Whether the colorbar should have ‘extension’ arrows. See
help(pylab.colorbar) for more details.

	colorbar – Should we plot a colorbar?

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_3d_comp_Poisson(model, data, vmin=None, vmax=None, resid_range=None, fig_num=None, pop_ids=None, residual='Anscombe', adjust=True, out=None, show=True)

	Poisson comparison between 3d model and data.

	Parameters:

	
	model – 3-dimensional model SFS

	data – 3-dimensional data SFS

	vmin – Minimum value plotted.

	vmax – Maximum value plotted.

	resid_range – Residual plot saturates at +- resid_range.

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	adjust – Should method use automatic ‘subplots_adjust’? For advanced
manipulation of plots, it may be useful to make this False.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_3d_comp_multinom(model, data, vmin=None, vmax=None, resid_range=None, fig_num=None, pop_ids=None, residual='Anscombe', adjust=True, out=None, show=True)

	Multinomial comparison between 3d model and data.

	Parameters:

	
	model – 3-dimensional model SFS

	data – 3-dimensional data SFS

	vmin – Minimum value plotted.

	vmax – Maximum value plotted.

	resid_range – Residual plot saturates at +- resid_range.

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	adjust – Should method use automatic ‘subplots_adjust’? For advanced
manipulation of plots, it may be useful to make this False.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_3d_spectrum(fs, fignum=None, vmin=None, vmax=None, pop_ids=None, out=None, show=True)

	Logarithmic heatmap of single 3d FS.

Note that this method is slow, because it relies on matplotlib’s software
rendering. For faster and better looking plots, use plot_3d_spectrum_mayavi.

	Parameters:

	
	fs – FS to plot

	vmin – Values in fs below vmin are masked in plot.

	vmax – Values in fs above vmax saturate the color spectrum.

	fignum – Figure number to plot into. If None, a new figure will be created.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_4d_comp_Poisson(model, data, vmin=None, vmax=None, resid_range=None, fig_num=None, pop_ids=None, residual='Anscombe', adjust=True, out=None, show=True)

	Poisson comparison between 4d model and data.

	Parameters:

	
	model – 4-dimensional model SFS

	data – 4-dimensional data SFS

	vmin – Minimum value plotted.

	vmax – Maximum value plotted.

	resid_range – Residual plot saturates at +- resid_range.

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	adjust – Should method use automatic ‘subplots_adjust’? For advanced
manipulation of plots, it may be useful to make this False.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_4d_comp_multinom(model, data, vmin=None, vmax=None, resid_range=None, fig_num=None, pop_ids=None, residual='Anscombe', adjust=True, out=None, show=True)

	Multinomial comparison between 4d model and data.

	Parameters:

	
	model – 4-dimensional model SFS

	data – 4-dimensional data SFS

	vmin – Minimum value plotted.

	vmax – Maximum value plotted.

	resid_range – Residual plot saturates at +- resid_range.

	fig_num – Clear and use figure fig_num for display. If None, an new figure
window is created.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	residual – ‘Anscombe’ for Anscombe residuals, which are more normally
distributed for Poisson sampling. ‘linear’ for the linear
residuals, which can be less biased.

	adjust – Should method use automatic ‘subplots_adjust’? For advanced
manipulation of plots, it may be useful to make this False.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

	
moments.Plotting.plot_single_2d_sfs(sfs, vmin=None, vmax=None, ax=None, pop_ids=None, extend='neither', colorbar=True, cmap=<matplotlib.colors.LinearSegmentedColormap object>, out=None, show=True)

	Heatmap of single 2d SFS.

If vmax is greater than a factor of 10, plot on log scale.

Returns colorbar that is created.

	Parameters:

	
	sfs – SFS to plot

	vmin – Values in sfs below vmin are masked in plot.

	vmax – Values in sfs above vmax saturate the color spectrum.

	ax – Axes object to plot into. If None, the result of pylab.gca() is used.

	pop_ids – If not None, override pop_ids stored in Spectrum.

	extend – Whether the colorbar should have ‘extension’ arrows. See
help(pylab.colorbar) for more details.

	colorbar – Should we plot a colorbar?

	cmap – Pylab colormap to use for plotting.

	out – Output filename to save figure, if given.

	show – If True, execute pylab.show command to make sure plot displays.

API for linkage disequilibrium

LD statistics class and function

	
class moments.LD.LDstats(data, num_pops=None, pop_ids=None)

	Represents linkage disequilibrium statistics as a list of arrays, where
each entry in the list is an array of statistics for a corresponding
recombination rate. The final entry in the list is always the heterozygosity
statistics. Thus, if we have an LDstats object for 3 recombination rate
values, the list will have length 4.

LDstats are represented as a list of statistics over two locus pairs for
a given recombination distance.

	Parameters:

	
	data (list of arrays) – A list of LD and heterozygosity stats.

	num_pops (int) – Number of populations. For one population, higher order
statistics may be computed.

	pop_ids (list of strings, optional) – Population IDs in order that statistics are represented here.

	
H(pops=None)

	Returns heterozygosity statistics for the populations given.

	Parameters:

	pops (list of ints, optional) – The indexes of populations to return stats for.

	
LD(pops=None)

	Returns LD stats for populations given (if None, returns all).

	Parameters:

	pops (list of ints, optional) – The indexes of populations to return stats for.

	
admix(pop0, pop1, f, new_id='Adm')

	Admixture between pop0 and pop1, given by indexes. f is the fraction
contributed by pop0, so pop1 contributes 1-f. If new_id is not specified,
the admixed population’s name is ‘Adm’. Otherwise, we can set it with
new_id=new_pop_id.

	Parameters:

	
	pop0 (int) – First population to admix.

	pop1 (int) – Second population to admix.

	f (float) – The fraction of ancestry contributed by pop0, so pop1 contributes
1 - f.

	new_id (str, optional) – The name of the admixed population.

	
f2(X, Y)

	Returns \(f_2(X, Y) = (X-Y)^2\).

X, and Y can be specified as population ID strings, or as indexes
(but these cannot be mixed).

	Parameters:

	
	X – One of the populations, as index or population ID.

	Y – The other population, as index or population ID.

	
f3(X, Y, Z)

	Returns \(f_3(X; Y, Z) = (X-Y)(X-Z)\). A significantly negative
\(f_3\) of this form suggests that population X is the result
of admixture between ancient populations related to Y and Z. A positive
value suggests that X is an outgroup to Y and Z.

X, Y, and Z can be specified as population ID strings, or as indexes
(but these cannot be mixed).

	Parameters:

	
	X – The “test” population, as index or population ID.

	Y – The first reference population, as index or population ID.

	Z – The second reference population, as index or population ID.

	
f4(X, Y, Z, W)

	Returns \(f_4(X, Y; Z, W) = (X-Y)(Z-W)\).

X, Y, and Z can be specified as population ID strings, or as indexes
(but these cannot be mixed).

	Parameters:

	
	X – The “test” population, as index or population ID.

	Y – The first reference population, as index or population ID.

	Z – The second reference population, as index or population ID.

	W –

	
static from_demes(g, sampled_demes, sample_times=None, rho=None, theta=0.001, r=None, u=None, Ne=None)

	Takes a deme graph and computes the LD stats. demes is a package for
specifying demographic models in a user-friendly, human-readable YAML
format. This function automatically parses the demographic description
and returns a LD for the specified populations and recombination and
mutation rates.

	Parameters:

	
	g (demes.DemeGraph) – A demes DemeGraph from which to compute the LD.

	sampled_demes (list of strings) – A list of deme IDs to take samples from. We can repeat
demes, as long as the sampling of repeated deme IDs occurs at distinct
times.

	sample_times (list of floats, optional) – If None, assumes all sampling occurs at the end of the
existence of the sampled deme. If there are
ancient samples, sample_times must be a list of same length as
sampled_demes, giving the sampling times for each sampled
deme. Sampling times are given in time units of the original deme graph,
so might not necessarily be generations (e.g. if g.time_units is years)

	rho – The population-size scaled recombination rate(s). Can be None, a
non-negative float, or a list of values. Cannot be used with Ne.

	theta – The population-size scaled mutation rate. Cannot be used with Ne.

	r – The raw recombination rate. Can be None, a non-negative float, or a
list of values. Must be used with Ne.

	u – The raw per-base mutation rate. Must be used with Ne, in which case
theta is set to 4 * Ne * u.

	Ne (float, optional) – The reference population size. If none is given, we use the initial
size of the root deme. For use with r and u, to compute rho and
theta. If rho and/or theta are given, we do not pass Ne.

	Returns:

	A moments.LD LD statistics object, with number of populations equal
to the length of sampled_demes.

	Return type:

	moments.LD.LDstats

	
static from_file(fid, return_statistics=False, return_comments=False)

	Read LD statistics from file.

	Parameters:

	
	fid (str) – The file name to read from or an open file object.

	return_statistics (bool, optional) – If true, returns statistics writen to file.

	return_comments (bool, optional) – If true, the return value is (y, comments), where
comments is a list of strings containing the comments
from the file (without #’s).

	
integrate(nu, tf, dt=0.001, rho=None, theta=0.001, m=None, selfing=None, selfing_rate=None, frozen=None)

	Integrates the LD statistics forward in time. When integrating LD statistics
for a list of recombination rates and mutation rate, they must be passed
as keywork arguments to this function. We can integrate either single-population
LD statistics up to order 10, or multi-population LD statistics but only
for order 2 (which includes \(D^2\), \(Dz\), and \(\pi_2\)).

	Parameters:

	
	nu (list or function) – The relative population size, may be a function of time,
given as a list [nu1, nu2, …]

	tf (float) – Total time to integrate

	dt (float) – Integration timestep

	rho (float or list of floats) – Can be a single recombination rate or list of recombination rates
(in which case we are integrating a list of LD stats for each rate)

	theta – The per base population-scaled mutation rate (4N*mu)
if we pass [theta1, theta2], differing mutation rates at left and right
locus, implemented in the ISM=True model

	m (array) – The migration matrix (num_pops x num_pops, storing m_ij migration rates
where m_ij is probability that a lineage in i had parent in j
m_ii is unused, and found by summing off diag elements in the ith row

	selfing (list of floats) – A list of selfing probabilities, same length as nu.

	selfing_rate (list of floats) – Alias for selfing.

	frozen (list of bools) – A list of True and False same length as nu. True implies that a
lineage is frozen (as in ancient samples). False integrates as normal.

	
marginalize(pops)

	Marginalize over the LDstats, removing moments for given populations.

	Parameters:

	pops (int or list of ints) – The index or list of indexes of populations to marginalize.

	
merge(pop0, pop1, f, new_id='Merged')

	Merger of populations pop0 and pop1, with fraction f from pop0
and 1-f from pop1. Places new population at the end, then marginalizes
pop0 and pop1. To admix two populations and keep one or both, use pulse
migrate or admix, respectively.

	Parameters:

	
	pop0 (int) – First population to merge.

	pop1 (int) – Second population to merge.

	f (float) – The fraction of ancestry contributed by pop0, so pop1 contributes
1 - f.

	new_id (str, optional) – The name of the merged population.

	
names()

	Returns the set of LD and heterozygosity statistics names for the
number of populations represented by the LDstats.

Note that this will always return the full set of statistics,

	
pulse_migrate(pop0, pop1, f)

	Pulse migration/admixure event from pop0 to pop1, with fraction f
replacement. We use the admix function above. We want to keep the
original population names the same, if they are given in the LDstats
object, so we use new_pop=self.pop_ids[pop1].

We admix pop0 and pop1 with fraction f and 1-f, then swap the new
admixed population with pop1, then marginalize the original pop1.

	Parameters:

	
	pop0 (int) – The index of the source population.

	pop1 (int) – The index of the target population.

	f (float) – The fraction of ancestry contributed by the source population.

	
split(pop_to_split, new_ids=None)

	Splits the population given into two child populations. One child
population keeps the same index and the second child population is
placed at the end of the list of present populations. If new_ids
is given, we can set the population IDs of the child populations,
but only if the input LDstats have population IDs available.

	Parameters:

	
	pop_to_split (int) – The index of the population to split.

	new_ids (list of strings, optional) – List of child population names, of length two.

	
static steady_state(nus, m=None, rho=None, theta=0.001, selfing_rate=None, pop_ids=None)

	Computes the steady state solution for one or two populations. The number of
populations is determined by the length of nus, which is a list with
relative population sizes (often, these will be set to 1, meaning sizes are
equal to some reference or ancestral population size).

The steady state can only be found for one- and two-population scenarios.
If two populations are desired, we must provide m, a 2-by-2 migration
matrix, and there must be at least one nonzero migration rate. This
corresponds to an island model with asymmetric migration and potentially
unequal population sizes.

	Parameters:

	
	nus (list of numbers) – The relative population sizes, with one or two entries,
corresponding to a steady state solution with one or two populations,
resp.

	m (array-like) – A migration matrix, only provided when the length of nus is 2.

	rho – The population-size scaled recombination rate(s). Can be None, a
non-negative float, or a list of values.

	theta (float) – The population-size scaled mutation rate

	selfing_rate (number or list of numbers) – Self-fertilization rate(s), given as a number (for a
single population, or list of numbers (for two populations). Selfing
rates must be between 0 and 1.

	pop_ids (list of strings) – The population IDs.

	Returns:

	A moments.LD LD statistics object.

	Return type:

	moments.LD.LDstats

	
swap_pops(pop0, pop1)

	Swaps pop0 and pop1 in the order of the population in the LDstats.

	Parameters:

	
	pop0 (int) – The index of the first population to swap.

	pop1 (int) – The index of the second population to swap.

	
to_file(fid, precision=16, statistics='ALL', comment_lines=[])

	Write LD statistics to file.

The file format is:

	# Any number of comment lines beginning with a ‘#’

	A single line containing an integer giving the number of
populations.

	On the same line, optional, the names of those populations. If
names are given, there needs to be the same number of pop_ids
as the integer number of populations. For example, the line could
be ‘3 YRI CEU CHB’.

	A single line giving the names of the LD statistics, in the order
they appear for each recombination rate distance or bin.
Optionally, this line could read ALL, indicating that every
statistic in the basis is given, and in the ‘correct’ order.

	A single line giving the names of the heterozygosity statistics,
in the order they appear in the final row of data. Optionally,
this line could read ALL.

	A line giving the number of recombination rate bins/distances we
have data for (so we know how many to read)

	One line for each row of LD statistics.

	A single line for the heterozygosity statistics.

	Parameters:

	
	fid (str) – The file name to write to or an open file object.

	precision (int) – The precision with which to write out entries of the LD stats.
(They are formated via %.<p>g, where <p> is the precision.)

	statistics (list of list of strings) – Defaults to ‘ALL’, meaning all statistics are given in the
LDstats object. Otherwise, list of two lists, first giving
present LD stats, and the second giving present het stats.

	comment_lines (list of srtings) – List of strings to be used as comment lines in the header
of the output file.
I use comment lines mainly to record the recombination
bins or distances given in the LDstats (something like
“‘edges = ‘ + str(r_edges)”.

Demographic functions

	
moments.LD.Demographics1D.bottlegrowth(params, order=2, rho=None, theta=0.001, pop_ids=None)

	Exponential growth (or decay) model after size change.

	Parameters:

	
	params (list) – The relative initial and final sizes of the final epoch
and its integration time in genetic units: (nuB, nuF, T).

	order (int) – The maximum order of the LD statistics. Defaults to 2.

	rho (float or list of floats, optional) – Population-scaled recombination rate (4Nr),
given as scalar or list of rhos.

	theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

	pop_ids (lits of str, optional) – List of population IDs of length 1.

	
moments.LD.Demographics1D.growth(params, order=2, rho=None, theta=0.001, pop_ids=None)

	Exponential growth (or decay) model.

	Parameters:

	
	params (list) – The relative final size and integration time of recent epoch,
in genetic units: (nuF, T)

	order (int) – The maximum order of the LD statistics. Defaults to 2.

	rho (float or list of floats, optional) – Population-scaled recombination rate (4Nr),
given as scalar or list of rhos.

	theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

	pop_ids (lits of str, optional) – List of population IDs of length 1.

	
moments.LD.Demographics1D.snm(params=None, order=2, rho=None, theta=0.001, pop_ids=None)

	Equilibrium neutral model. Does not take demographic parameters.

	Parameters:

	
	params – Unused.

	order (int) – The maximum order of the LD statistics. Defaults to 2.

	rho (float or list of floats, optional) – Population-scaled recombination rate (4Nr),
given as scalar or list of rhos.

	theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

	pop_ids (lits of str, optional) – List of population IDs of length 1.

	
moments.LD.Demographics1D.three_epoch(params, order=2, rho=None, theta=0.001, pop_ids=None)

	Three epoch model with constant sized epochs.

	Parameters:

	
	params (list) – The relative sizes and integration times of recent epochs,
in genetic units: (nu1, nu2, T1, T2).

	order (int) – The maximum order of the LD statistics. Defaults to 2.

	rho (float or list of floats, optional) – Population-scaled recombination rate (4Nr),
given as scalar or list of rhos.

	theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

	pop_ids (lits of str, optional) – List of population IDs of length 1.

	
moments.LD.Demographics1D.two_epoch(params, order=2, rho=None, theta=0.001, pop_ids=None)

	Two epoch model with a single size change and constant sized epochs.

	Parameters:

	
	params (list) – The relative size and integration time of recent epoch,
in genetic units: (nu, T).

	order (int) – The maximum order of the LD statistics. Defaults to 2.

	rho (float or list of floats, optional) – Population-scaled recombination rate (4Nr),
given as scalar or list of rhos.

	theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

	pop_ids (lits of str, optional) – List of population IDs of length 1.

	
moments.LD.Demographics2D.snm(params=None, rho=None, theta=0.001, pop_ids=None)

	Equilibrium neutral model. Neutral steady state followed by split in
the immediate past.

	Parameters:

	
	params – Unused.

	rho (float or list of floats, optional) – Population-scaled recombination rate (4Nr),
given as scalar or list of rhos.

	theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

	pop_ids (lits of str, optional) – List of population IDs of length 2.

	
moments.LD.Demographics2D.split_mig(params, rho=None, theta=0.001, pop_ids=None)

	Split into two populations of specifed size, which then have their own
relative constant sizes and symmetric migration between populations.

	nu1: Size of population 1 after split.

	nu2: Size of population 2 after split.

	T: Time in the past of split (in units of 2*Na generations)

	m: Migration rate between populations (2*Na*m)

	Parameters:

	
	params – The input parameters: (nu1, nu2, T, m)

	rho (float or list of floats, optional) – Population-scaled recombination rate (4Nr),
given as scalar or list of rhos.

	theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

	pop_ids (lits of str, optional) – List of population IDs of length 1.

Three-population demographic models.

	
moments.LD.Demographics3D.out_of_Africa(params, rho=None, theta=0.001, pop_ids=['YRI', 'CEU', 'CHB'])

	The Gutenkunst et al (2009) out-of-Africa that has been reinferred a
number of times.

	Parameters:

	
	params – List of parameters, in the order (nuA, TA, nuB, TB, nuEu0,
nuEuF, nuAs0, nuAsF, TF, mAfB, mAfEu, mAfAs, mEuAs).

	rho – Recombination rate or list of recombination rates (population-size
scaled).

	theta – Population-size scaled mutation rate.

	pop_ids – List of population IDs.

Utility functions

	
moments.LD.Util.het_names(num_pops)

	Returns the heterozygosity statistic representation names.

	Parameters:

	num_pops (int) – Number of populations.

	
moments.LD.Util.ld_names(num_pops)

	Returns the LD statistic representation names.

	Parameters:

	num_pops (int) – Number of populations.

	
moments.LD.Util.map_moment(mom)

	There are repeated moments with equal expectations, so we collapse them into
the same moment.

	Parameters:

	mom (str) – The moment to map to its “canonical” name.

	
moments.LD.Util.moment_names(num_pops)

	Returns a tuple of length two with LD and heterozygosity moment names.

	Parameters:

	num_pops (int) – Number of populations

	
moments.LD.Util.perturb_params(params, fold=1, lower_bound=None, upper_bound=None)

	Generate a perturbed set of parameters. Each element of params is randomly
perturbed by the given factor of 2 up or down.

	Parameters:

	
	params (list) – A list of input parameters.

	fold (float) – Number of factors of 2 to perturb by.

	lower_bound (list) – If not None, the resulting parameter set is adjusted
to have all value greater than lower_bound. Must have equal length to
params.

	upper_bound (list) – If not None, the resulting parameter set is adjusted
to have all value less than upper_bound. Must have equal length to
params.

	
moments.LD.Util.rescale_params(params, types, Ne=None, gens=1, uncerts=None, time_offset=0)

	Rescale parameters to physical units, so that times are in generations or years,
sizes in effective instead of relative sizes, and migration probabilities in
per-generation units.

For generation times of events to be correctly rescaled, times in the
parameters list must be specified so that earlier epochs are earlier in the
list, because we return rescaled cumulative times. All time parameters must
refer to consecutive epochs. Epochs need not start at contemporary time, and
we can specify the time offset using time_offset.

If uncertainties are not given (uncerts = None), the return value is an
array of rescaled parameters. If uncertainties are given, the return value
has length two: the first entry is an array of rescaled parameters, and the
second entry is an array of rescaled uncertainties.

	Parameters:

	
	params (list) – List of parameters.

	types (list) – List of parameter types. Times are given by “T”, sizes by “nu”,
effective size by “Ne”, migration rates by “m”, and fractions by “x” or “f”.

	Ne (float) – The effective population size, typically as the last entry in
params.

	gens (float) – The generation time.

	uncerts (list) – List of uncertainties, same length as params.

	time_offset (int or float) – The amount of time added to each rescaled time point. This
lets us have consecutive epochs that stop short of time 0 (final sampling
time).

Parsing functions

	
moments.LD.Parsing.bootstrap_data(all_data, normalization=0)

	Returns bootstrapped variances for LD statistics. This function operates
on data that is sums (i.e. the direct output of compute_ld_statistics()),
instead of mean statistics.

We first check that all ‘stats’, ‘bins’, ‘pops’ (if present),
match across all regions

If there are N total regions, we compute N bootstrap replicates
by sampling N times with replacement and summing over all ‘sums’.

	Parameters:

	
	all_data (dict) – A dictionary (with arbitrary keys), where each value
is LD statistics computed from a distinct region. all_data[reg]
stats from each region has keys, ‘bins’, ‘sums’, ‘stats’, and
optional ‘pops’.

	normalization (int) – we work with \(\sigma_d^2\) statistics,
and by default we use population 0 to normalize stats

	
moments.LD.Parsing.compute_average_stats(Gs, genotypes=True)

	Takes the outputs of compute_pairwise_stats and returns
the average value for each statistic.

	Parameters:

	
	Gs – A genotype matrix, of size L-by-n, where
L is the number of loci and n is the sample size.
Missing data is encoded as -1.

	genotypes – If True, use 0, 1, 2 genotypes. If False,
use 0, 1 phased haplotypes.

	
moments.LD.Parsing.compute_average_stats_between(Gs1, Gs2, genotypes=True)

	Takes the outputs of compute_pairwise_stats_between and returns
the average value for each statistic.

	Parameters:

	
	Gs1 – A genotype matrices, of size L1 by n, where
L1 is the number of loci and n is the sample size.
Missing data is encoded as -1.

	Gs2 – A genotype matrices, of size L2 by n, where
L1 is the number of loci and n is the sample size.
Missing data is encoded as -1.

	
moments.LD.Parsing.compute_ld_statistics(vcf_file, bed_file=None, chromosome=None, rec_map_file=None, map_name=None, map_sep=None, pop_file=None, pops=None, cM=True, r_bins=None, bp_bins=None, min_bp=None, use_genotypes=True, use_h5=True, stats_to_compute=None, ac_filter=True, report=True, report_spacing=1000, use_cache=True)

	Computes LD statistics for a given VCF. Binning can be done by base pair
or recombination distances, the latter requiring a recombination map. For
more than one population, we include a population file that maps samples
to populations, and specify with populations to compute statistics fro.

If data is phased, we can set use_genotypes to False, and there are
other options for masking data.

Note

Currently, the recombination map is not given in HapMap format.
Future versions will accept HapMap formatted recombination maps
and deprecate some of the boutique handling of map options here.

	Parameters:

	
	vcf_file (str) – The input VCF file name.

	bed_file (str) – An optional bed file that specifies regions over which
to compute LD statistics. If None, computes statistics for all positions
in VCF.

	chromosome (str) – If None, treats all positions in VCF as coming from same
chromosome. If multiple chromosomes are reported in the same VCF, we need to
specify which chromosome to keep variants from.

	rec_map_file (str) – The input recombination map. The format is
{pos} {map (cM)} {additional maps}

	map_name (str) – If None, takes the first map column, otherwise takes the
specified map column with the name matching the recombination map file header.

	map_sep (str) – Deprecated! We now read the recombination map, splitting by
any white space. Previous behaviour: Tells pandas how to parse the recombination map.

	pop_file (str) – A file the specifies the population for each sample in the VCF.
Each sample is listed on its own line, in the format “{sample} {pop}”. The
first line must be “sample pop”.

	pops (list(str)) – List of populations to compute statistics for.
If none are given, it treates every sample as coming from the same population.

	cM (bool) – If True, the recombination map is specified in cM. If False,
the map is given in units of Morgans.

	r_bins (list(float)) – A list of raw recombination rate bin edges.

	bp_bins (list(float)) – If r_bins are not given, a list of bp bin
edges (for use when no recombination map is specified).

	min_bp (int, float) – The minimum bp allowed for a segment specified
by the bed file.

	use_genotypes (bool) – If True, we assume the data in the VCF is unphased.
Otherwise, we use phased information.

	use_h5 (bool) – If True, we use the h5 format.

	stats_to_compute (list) – If given, we compute only the statistics specified.
Otherwise, we compute all possible statistics for the populations given.

	ac_filter – Ensure at least two samples are present per population. This
prevents computed heterozygosity statistics from returning NaN when some
loci have too few called samples.

	report (bool) – If True, we report the progress of our parsing.

	report_spacing (int) – We track the number of “left” variants we compute,
and report our progress with the given spacing.

	use_cache (bool) – If True, cache intermediate results.

	
moments.LD.Parsing.compute_pairwise_stats(Gs, genotypes=True)

	Computes \(D^2\), \(Dz\), \(\pi_2\), and \(D\) for every
pair of loci within a block of SNPs, coded as a genotype matrix.

	Parameters:

	
	Gs – A genotype matrix, of size L-by-n, where
L is the number of loci and n is the sample size.
Missing data is encoded as -1.

	genotypes – If True, use 0, 1, 2 genotypes. If False,
use 0, 1 phased haplotypes.

	
moments.LD.Parsing.compute_pairwise_stats_between(Gs1, Gs2, genotypes=True)

	Computes \(D^2\), \(Dz\), \(\pi_2\), and \(D\)
for every pair of loci between two blocks of SNPs, coded as
genotype matrices.

The Gs are matrices, where rows correspond to loci and columns to individuals.
Both matrices must have the same number of individuals. If Gs1 has length L1
and Gs2 has length L2, we compute all pairwise counts, which has size (L1*L2, 9).

We use the sparse genotype matrix representation, where
we first “sparsify” the genotype matrix, and then count
two-locus genotype configurations from that, from which
we compute two-locus statistics

	Parameters:

	
	Gs1 – A genotype matrices, of size L1 by n, where
L1 is the number of loci and n is the sample size.
Missing data is encoded as -1.

	Gs2 – A genotype matrices, of size L2 by n, where
L1 is the number of loci and n is the sample size.
Missing data is encoded as -1.

	genotypes – If True, use 0, 1, 2 genotypes. If False,
use 0, 1 phased haplotypes.

	
moments.LD.Parsing.get_bootstrap_sets(all_data, num_bootstraps=None, normalization=0, remove_norm_stats=True)

	From a dictionary of all the regional data, resample with replacement
to construct bootstrap data.

Returns a list of bootstrapped datasets of mean statistics.

	Parameters:

	
	all_data (dict) – Dictionary of regional LD statistics. Keys are region
identifiers and must be unique, and the items are the outputs of
compute_ld_statistics.

	num_bootstraps (int) – The number of bootstrap replicates to compute. If
None, it computes the same number as the nubmer of regions in all_data.

	normalization (int) – The index of the population to normalize by. Defaults
to 0.

	
moments.LD.Parsing.get_genotypes(vcf_file, bed_file=None, chromosome=None, min_bp=None, use_h5=True, report=True)

	Given a vcf file, we extract the biallelic SNP genotypes. If bed_file is None,
we use all valid variants. Otherwise we filter genotypes by the given bed file.
If chromosome is given, filters to keep snps only in given chrom (useful for vcfs
spanning multiple chromosomes).

If use_h5 is True, we try to load the h5 file, which has the same path/name as
vcf_file, but with {fname}.h5 instead of {fname}.vcf or {fname}.vcf.gz. If the h5
file does not exist, we create it and save it as {fname}.h5

Returns (biallelic positions, biallelic genotypes, biallelic allele counts,
sampled ids).

	Parameters:

	
	vcf_file (str) – A VCF-formatted file.

	bed_file (str, optional) – A bed file specifying regions to compute statistics from. The
chromosome name formatting must match the chromosome name formatting of the
input VCF (i.e., both carry the leading “chr” or both omit it).

	min_bp (int, optional) – only used with bed file, filters out features that are smaller
than min_bp.

	chromosome (int or str, optional) – Chromosome to compute LD statistics from.

	use_h5 (bool, optional) – If use_h5 is True, we try to load the h5 file, which has the
same path/name as vcf_file, but with .h5 instead of .vcf or .vcf.gz extension.
If the h5 file does not exist, we create it and save it with .h5 extension.
Defaults to True.

	report (bool, optional) – Prints progress updates if True, silent otherwise. Defaults to True.

	
moments.LD.Parsing.means_from_region_data(all_data, stats, norm_idx=0)

	Get means over all parsed regions.

	Parameters:

	
	all_data (dict) – A dictionary with keys as unique identifiers of the
regions and values as reported stats from compute_ld_statistics.

	stats (list of lists) – The list of LD and H statistics that are present
in the data replicates.

	norm_idx (int, optional) – The index of the population to normalize by.

	
moments.LD.Parsing.subset_data(data, pops_to, normalization=0, r_min=None, r_max=None, remove_Dz=False)

	Take the output data and get r_edges, ms, vcs, and stats to pass to inference
machinery. pops_to are the subset of the populations to marginalize the data
to. r_min and r_max trim bins that fall outside of this range, and
remove_Dz allows us to remove all \(\sigma_{Dz}\) statistics.

	Parameters:

	
	data – The output of bootstrap_data, which contains
bins, statistics, populations, means, and variance-covariance matrices.

	pops_to – A list of populations to subset to.

	normalization – The population index that the original data was
normalized by.

	r_min – The minimum recombination distance to keep.

	r_max – The maximum recombination distance to keep.

	remove_Dz – If True, remove all Dz statistics. Otherwise keep them.

Inference and computing confidence intervals

Inference methods

	
moments.LD.Inference.bin_stats(model_func, params, rho=[], theta=0.001, spread=None, kwargs={})

	Computes LD statist for a given model function over bins defined by rho.
Here, rho gives the bin edges, and we assume no spaces between bins. That
is, if the length of the input recombination rates is \(l\), the number of
bins is \(l-1\).

	Parameters:

	
	model_func – The model function that takes parameters in the form
model_func(params, rho=rho, theta=theta, **kwargs).

	params (list of floats) – The parameters to evaluate the model at.

	rho (list of floats) – The scaled recombination rate bin edges.

	theta (float, optional) – The mutation rate

	spread (list of arrays) – A list of length rho-1 (number of bins), where each entry is an
array of length rho+1 (number of bins plus amount outside bin range to each
side). Each array must sum to one.

	kwargs – Extra keyword arguments to pass to model_func.

	
moments.LD.Inference.ll_over_bins(xs, mus, Sigmas)

	Compute the composite log-likelihood over LD and heterozygosity statistics, given
data and expectations. Inputs must be in the same order, and we assume each bin
is independent, so we sum _ll(x, mu, Sigma) over each bin.

	Parameters:

	
	xs – A list of data arrays.

	mus – A list of model function output arrays, same length as xs.

	Sigmas – A list of var-cov matrices, same length as xs.

	
moments.LD.Inference.optimize_log_fmin(p0, data, model_func, rs=None, theta=None, u=2e-08, Ne=None, lower_bound=None, upper_bound=None, verbose=0, flush_delay=0.5, normalization=0, func_args=[], func_kwargs={}, fixed_params=None, use_afs=False, Leff=None, multinom=False, ns=None, statistics=None, pass_Ne=False, spread=None, maxiter=None, maxfun=None)

	Optimize (using the log of) the parameters using a downhill simplex
algorithm. Initial parameters p0, the data [means, varcovs],
the demographic model_func, and rs to specify recombination
bin edges are required. Ne must either be specified as a keyword
argument or is included as the last parameter in p0.

	Parameters:

	
	p0 (list) – The initial guess for demographic parameters,
demography parameters plus (optionally) Ne.

	data (list) – The parsed data[means, varcovs, fs]. The frequency spectrum
fs is optional, and used only if use_afs=True.

	Means: The list of mean statistics within each bin
(has length len(rs) or len(rs) - 1 if using AFS). If we are
not using the AFS, which is typical, the heterozygosity statistics
come last.

	varcovs: The list of varcov matrices matching the data in means.

	model_func (list) – The demographic model to compute statistics
for a given rho. If we are using AFS, it’s a list of the two models
[LD func, AFS func]. If we’re using LD stats alone, we pass a single LD
model as a list: [LD func].

	rs (list) – The list of raw recombination rates defining bin edges.

	theta (float, optional) – The population scaled per base mutation rate
(4*Ne*mu, not 4*Ne*mu*L).

	u (float, optional) – The raw per base mutation rate.
Cannot be used with theta.

	Ne (float, optional) – The fixed effective population size to scale
u and r. If Ne is a parameter to fit, it should be the last parameter
in p0.

	lower_bound (list, optional) – Defaults to None. Constraints on the
lower bounds during optimization. These are given as lists of the same
length of the parameters.

	upper_bound (list, optional) – Defaults to None. Constraints on the
upper bounds during optimization. These are given as lists of the same
length of the parameters.

	verbose (int, optional) – If an integer greater than 0, prints updates
of the optimization procedure at intervals given by that spacing.

	func_args (list, optional) – Additional arguments to be passed
to model_func.

	func_kwargs (dict, optional) – Additional keyword arguments to be
passed to model_func.

	fixed_params (list, optional) – Defaults to None. To fix some
parameters, this should be a list of equal length as p0, with
None for parameters to be fit and fixed values at corresponding
indexes.

	use_afs (bool, optional) – Defaults to False. We can pass a model
to compute the frequency spectrum and use
that instead of heterozygosity statistics for single-locus data.

	Leff (float, optional) – The effective length of genome from which
the fs was generated (only used if fitting to afs).

	multinom (bool, optional) – Only used if we are fitting the AFS.
If True, the likelihood is computed for an optimally rescaled FS.
If False, the likelihood is computed for a fixed scaling of the FS
found by theta=4*Ne*u and Leff

	ns (list of ints, optional) – The sample size, which is only needed
if we are using the frequency spectrum, as the sample size does not
affect mean LD statistics.

	statistics (list, optional) – Defaults to None, which assumes that
all statistics are present and in the conventional default order. If
the data is missing some statistics, we must specify which statistics
are present using the subset of statistic names given by
moments.LD.Util.moment_names(num_pops).

	pass_Ne (bool, optional) – Defaults to False. If True, the
demographic model includes Ne as a parameter (in the final position
of input parameters).

	maxiter (int) – Defaults to None. Maximum number of iterations to perform.

	maxfun (int) – Defaults to None. Maximum number of function evaluations to make.

	
moments.LD.Inference.optimize_log_lbfgsb(p0, data, model_func, rs=None, theta=None, u=2e-08, Ne=None, lower_bound=None, upper_bound=None, verbose=0, flush_delay=0.5, normalization=0, func_args=[], func_kwargs={}, fixed_params=None, use_afs=False, Leff=None, multinom=False, ns=None, statistics=None, pass_Ne=False, spread=None, maxiter=40000, epsilon=0.001, pgtol=1e-05)

	Optimize (using the log of) the parameters using the modified Powell’s
method, which optimizes slices of parameter space sequentially. Initial
parameters p0, the data [means, varcovs],
the demographic model_func, and rs to specify recombination
bin edges are required. Ne must either be specified as a keyword
argument or is included as the last parameter in p0.

It is best at burrowing down a single minimum. This method is
better than optimize_log if the optimum lies at one or more of the
parameter bounds. However, if your optimum is not on the bounds, this
method may be much slower.

Because this works in log(params), it cannot explore values of params < 0.
It should also perform better when parameters range over scales.

The L-BFGS-B method was developed by Ciyou Zhu, Richard Byrd, and Jorge
Nocedal. The algorithm is described in:

	R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound
Constrained Optimization, (1995), SIAM Journal on Scientific and
Statistical Computing , 16, 5, pp. 1190-1208.

	C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B,
FORTRAN routines for large scale bound constrained optimization (1997),
ACM Transactions on Mathematical Software, Vol 23, Num. 4, pp. 550-560.

	Parameters:

	
	p0 (list) – The initial guess for demographic parameters,
demography parameters plus (optionally) Ne.

	data (list) – The parsed data[means, varcovs, fs]. The frequency spectrum
fs is optional, and used only if use_afs=True.

	Means: The list of mean statistics within each bin
(has length len(rs) or len(rs) - 1 if using AFS). If we are
not using the AFS, which is typical, the heterozygosity statistics
come last.

	varcovs: The list of varcov matrices matching the data in means.

	model_func (list) – The demographic model to compute statistics
for a given rho. If we are using AFS, it’s a list of the two models
[LD func, AFS func]. If we’re using LD stats alone, we pass a single LD
model as a list: [LD func].

	rs (list) – The list of raw recombination rates defining bin edges.

	theta (float, optional) – The population scaled per base mutation rate
(4*Ne*mu, not 4*Ne*mu*L).

	u (float, optional) – The raw per base mutation rate.
Cannot be used with theta.

	Ne (float, optional) – The fixed effective population size to scale
u and r. If Ne is a parameter to fit, it should be the last parameter
in p0.

	lower_bound (list, optional) – Defaults to None. Constraints on the
lower bounds during optimization. These are given as lists of the same
length of the parameters.

	upper_bound (list, optional) – Defaults to None. Constraints on the
upper bounds during optimization. These are given as lists of the same
length of the parameters.

	verbose (int, optional) – If an integer greater than 0, prints updates
of the optimization procedure at intervals given by that spacing.

	func_args (list, optional) – Additional arguments to be passed
to model_func.

	func_kwargs (dict, optional) – Additional keyword arguments to be
passed to model_func.

	fixed_params (list, optional) – Defaults to None. To fix some
parameters, this should be a list of equal length as p0, with
None for parameters to be fit and fixed values at corresponding
indexes.

	use_afs (bool, optional) – Defaults to False. We can pass a model
to compute the frequency spectrum and use
that instead of heterozygosity statistics for single-locus data.

	Leff (float, optional) – The effective length of genome from which
the fs was generated (only used if fitting to afs).

	multinom (bool, optional) – Only used if we are fitting the AFS.
If True, the likelihood is computed for an optimally rescaled FS.
If False, the likelihood is computed for a fixed scaling of the FS
found by theta=4*Ne*u and Leff

	ns (list of ints, optional) – The sample size, which is only needed
if we are using the frequency spectrum, as the sample size does not
affect mean LD statistics.

	statistics (list, optional) – Defaults to None, which assumes that
all statistics are present and in the conventional default order. If
the data is missing some statistics, we must specify which statistics
are present using the subset of statistic names given by
moments.LD.Util.moment_names(num_pops).

	pass_Ne (bool, optional) – Defaults to False. If True, the
demographic model includes Ne as a parameter (in the final position
of input parameters).

	maxiter (int) – Defaults to 40,000. Maximum number of iterations to perform.

	epsilon – Step-size to use for finite-difference derivatives.

	pgtol (float) – Convergence criterion for optimization. For more info,
see help(scipy.optimize.fmin_l_bfgs_b)

	
moments.LD.Inference.optimize_log_powell(p0, data, model_func, rs=None, theta=None, u=2e-08, Ne=None, lower_bound=None, upper_bound=None, verbose=0, flush_delay=0.5, normalization=0, func_args=[], func_kwargs={}, fixed_params=None, use_afs=False, Leff=None, multinom=False, ns=None, statistics=None, pass_Ne=False, spread=None, maxiter=None, maxfun=None)

	Optimize (using the log of) the parameters using the modified Powell’s
method, which optimizes slices of parameter space sequentially. Initial
parameters p0, the data [means, varcovs],
the demographic model_func, and rs to specify recombination
bin edges are required. Ne must either be specified as a keyword
argument or is included as the last parameter in p0.

	Parameters:

	
	p0 (list) – The initial guess for demographic parameters,
demography parameters plus (optionally) Ne.

	data (list) – The parsed data[means, varcovs, fs]. The frequency spectrum
fs is optional, and used only if use_afs=True.

	Means: The list of mean statistics within each bin
(has length len(rs) or len(rs) - 1 if using AFS). If we are
not using the AFS, which is typical, the heterozygosity statistics
come last.

	varcovs: The list of varcov matrices matching the data in means.

	model_func (list) – The demographic model to compute statistics
for a given rho. If we are using AFS, it’s a list of the two models
[LD func, AFS func]. If we’re using LD stats alone, we pass a single LD
model as a list: [LD func].

	rs (list) – The list of raw recombination rates defining bin edges.

	theta (float, optional) – The population scaled per base mutation rate
(4*Ne*mu, not 4*Ne*mu*L).

	u (float, optional) – The raw per base mutation rate.
Cannot be used with theta.

	Ne (float, optional) – The fixed effective population size to scale
u and r. If Ne is a parameter to fit, it should be the last parameter
in p0.

	lower_bound (list, optional) – Defaults to None. Constraints on the
lower bounds during optimization. These are given as lists of the same
length of the parameters.

	upper_bound (list, optional) – Defaults to None. Constraints on the
upper bounds during optimization. These are given as lists of the same
length of the parameters.

	verbose (int, optional) – If an integer greater than 0, prints updates
of the optimization procedure at intervals given by that spacing.

	func_args (list, optional) – Additional arguments to be passed
to model_func.

	func_kwargs (dict, optional) – Additional keyword arguments to be
passed to model_func.

	fixed_params (list, optional) – Defaults to None. To fix some
parameters, this should be a list of equal length as p0, with
None for parameters to be fit and fixed values at corresponding
indexes.

	use_afs (bool, optional) – Defaults to False. We can pass a model
to compute the frequency spectrum and use
that instead of heterozygosity statistics for single-locus data.

	Leff (float, optional) – The effective length of genome from which
the fs was generated (only used if fitting to afs).

	multinom (bool, optional) – Only used if we are fitting the AFS.
If True, the likelihood is computed for an optimally rescaled FS.
If False, the likelihood is computed for a fixed scaling of the FS
found by theta=4*Ne*u and Leff

	ns (list of ints, optional) – The sample size, which is only needed
if we are using the frequency spectrum, as the sample size does not
affect mean LD statistics.

	statistics (list, optional) – Defaults to None, which assumes that
all statistics are present and in the conventional default order. If
the data is missing some statistics, we must specify which statistics
are present using the subset of statistic names given by
moments.LD.Util.moment_names(num_pops).

	pass_Ne (bool, optional) – Defaults to False. If True, the
demographic model includes Ne as a parameter (in the final position
of input parameters).

	maxiter (int) – Defaults to None. Maximum number of iterations to perform.

	maxfun (int) – Defaults to None. Maximum number of function evaluations to make.

	
moments.LD.Inference.remove_nonpresent_statistics(y, statistics=[[], []])

	Removes data not found in the given set of statistics.

	Parameters:

	
	y (LDstats object.) – LD statistics.

	statistics – A list of lists for two and one locus statistics to keep.

	
moments.LD.Inference.remove_normalized_data(means, varcovs, normalization=0, num_pops=1, statistics=None)

	Returns data means and covariance matrices with the normalizing
statistics removed.

	Parameters:

	
	means (list of arrays) – List of means normalized statistics, where each entry is the
full set of statistics for a given recombination distance.

	varcovs (list of arrays) – List of the corresponding variance covariance matrices.

	normalization (int) – The index of the normalizing population.

	num_pops (int) – The number of populations in the data set.

	
moments.LD.Inference.remove_normalized_lds(y, normalization=0)

	Returns LD statistics with the normalizing statistic removed.

	Parameters:

	
	y (LDstats object) – An LDstats object that has been normalized to get
\(\sigma_D^2\)-formatted statistics.

	normalization (int) – The index of the normalizing population.

	
moments.LD.Inference.sigmaD2(y, normalization=0)

	Compute the \(\sigma_D^2\) statistics normalizing by the heterozygosities
in a given population.

	Parameters:

	
	y (LDstats object) – The input data.

	normalization (int, optional) – The index of the normalizing population
(normalized by pi2_i_i_i_i and H_i_i), default set to 0.

Confidence intervals

Parameter uncertainties are computed using Godambe information, described in
Coffman et al, MBE (2016). doi: https://doi.org/10.1093/molbev/msv255

If you use moments.LD.Godambe to compute parameter uncertainties, please cite
that paper. This was first developed by Alec Coffman for computing uncertainties
from inferences performed with dadi, modified here to handle LD decay curves.

	
moments.LD.Godambe.FIM_uncert(model_func, p0, ms, vcs, log=False, eps=0.01, r_edges=None, normalization=0, pass_Ne=False, statistics=None, verbose=0)

	Parameter uncertainties from Fisher Information Matrix. This approach typically
underestimates the size of the true confidence intervals, as it does not take
into account linkage between loci that causes data to be non-independent.

Returns standard deviations of parameter values.

	Parameters:

	
	model_func – Model function

	p0 – Best-fit parameters for model_func, with inferred Ne in last entry of
parameter list.

	ms – See below..

	vcs – Original means and covariances of statistics from data. If statistics
are not give, we remove the normalizing statistics. Otherwise, these need
to be pared down so that the normalizing statistics are removed.

	eps – Fractional stepsize to use when taking finite-difference derivatives.
Note that if eps*param is < 1e-12, then the step size for that parameter
will simply be eps, to avoid numerical issues with small parameter
perturbations.

	log – If True, assume log-normal distribution of parameters. Returned values
are then the standard deviations of the logs of the parameter values,
which can be interpreted as relative parameter uncertainties.

	return_GIM – If true, also return the full GIM.

	r_edges – The bin edges for LD statistics.

	normalization – The index of the population that we normalized by.

	pass_Ne – If True, Ne is a parameter in the model function, and by convention
is the last entry in the parameters list. If False, Ne is only used to scale
recombination rates.

	statistics – Statistics that we have included given as a list of lists:
[ld_stats, h_stats]. If statistics is not given, we assume all statistics
are included except for the normalizing statistic in each bin

	verbose (int, optional) – If an integer greater than 0, prints updates
of the number of function calls and tested parameters
at intervals given by that spacing.

	
moments.LD.Godambe.GIM_uncert(model_func, all_boot, p0, ms, vcs, log=False, eps=0.01, return_GIM=False, r_edges=None, normalization=0, pass_Ne=False, statistics=None, verbose=0)

	Parameter uncertainties from Godambe Information Matrix (GIM). If you use this
method, please cite
Coffman et al., MBE (2016) [https://doi.org/10.1093/molbev/msv255].

Returns standard deviations of parameter values.

	Parameters:

	
	model_func – Model function

	all_boot – List of bootstrap LD stat means [m0, m1, m2, …]

	p0 – Best-fit parameters for model_func, with inferred Ne in last entry of
parameter list.

	ms – See below..

	vcs – Original means and covariances of statistics from data. If statistics
are not give, we remove the normalizing statistics. Otherwise, these need
to be pared down so that the normalizing statistics are removed.

	eps – Fractional stepsize to use when taking finite-difference derivatives.
Note that if eps*param is < 1e-12, then the step size for that parameter
will simply be eps, to avoid numerical issues with small parameter
perturbations.

	log – If True, assume log-normal distribution of parameters. Returned values
are then the standard deviations of the logs of the parameter values,
which can be interpreted as relative parameter uncertainties.

	return_GIM – If true, also return the full GIM.

	r_edges – The bin edges for LD statistics.

	normalization – The index of the population that we normalized by.

	pass_Ne – If True, Ne is a parameter in the model function, and by convention
is the last entry in the parameters list. If False, Ne is only used to scale
recombination rates.

	statistics – Statistics that we have included given as a list of lists:
[ld_stats, h_stats]. If statistics is not given, we assume all statistics
are included except for the normalizing statistic in each bin

	verbose (int, optional) – If an integer greater than 0, prints updates
of the number of function calls and tested parameters
at intervals given by that spacing.

Plotting

Todo

These docs are still needed.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 moments	

 	
 	
 moments.Demographics1D	

 	
 	
 moments.Demographics2D	

 	
 	
 moments.Demographics3D	

 	
 	
 moments.Godambe	

 	
 	
 moments.LD.Demographics1D	

 	
 	
 moments.LD.Demographics2D	

 	
 	
 moments.LD.Demographics3D	

 	
 	
 moments.LD.Godambe	

 	
 	
 moments.LD.Inference	

 	
 	
 moments.LD.Parsing	

 	
 	
 moments.LD.Util	

 	
 	
 moments.TwoLocus.Demographics	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | Z

A

 	
 	admix() (moments.LD.LDstats method)

 	(moments.Spectrum method)

 	
 	ancestral_misid() (moments.TwoLocus.TLSpectrum method)

 	Anscombe_Poisson_residual() (in module moments.Inference)

B

 	
 	bin_stats() (in module moments.LD.Inference)

 	bootstrap() (in module moments.Misc)

 	bootstrap_data() (in module moments.LD.Parsing)

 	bottlegrowth() (in module moments.Demographics1D)

 	(in module moments.Demographics2D)

 	(in module moments.LD.Demographics1D)

 	(in module moments.TwoLocus.Demographics)

 	
 	bottlegrowth_split() (in module moments.Demographics2D)

 	bottlegrowth_split_mig() (in module moments.Demographics2D)

 	branch() (moments.Spectrum method)

C

 	
 	compute_average_stats() (in module moments.LD.Parsing)

 	compute_average_stats_between() (in module moments.LD.Parsing)

 	compute_ld_statistics() (in module moments.LD.Parsing)

 	
 	compute_pairwise_stats() (in module moments.LD.Parsing)

 	compute_pairwise_stats_between() (in module moments.LD.Parsing)

 	count_data_dict() (in module moments.Misc)

D

 	
 	D() (moments.TwoLocus.TLSpectrum method)

 	
 	D2() (moments.TwoLocus.TLSpectrum method)

 	Dz() (moments.TwoLocus.TLSpectrum method)

E

 	
 	equilibrium() (in module moments.TwoLocus.Demographics)

F

 	
 	f2() (moments.LD.LDstats method)

 	f3() (moments.LD.LDstats method)

 	f4() (moments.LD.LDstats method)

 	FIM_uncert() (in module moments.Godambe)

 	(in module moments.LD.Godambe)

 	fixed_size_sample() (moments.Spectrum method)

 	fold() (moments.Spectrum method)

 	(moments.TwoLocus.TLSpectrum method)

 	fold_ancestral() (moments.Triallele.TriSpectrum method)

 	fold_major() (moments.Triallele.TriSpectrum method)

 	
 	from_angsd() (moments.Spectrum static method)

 	from_data_dict() (moments.Spectrum static method)

 	from_demes() (moments.LD.LDstats static method)

 	(moments.Spectrum static method)

 	from_file() (moments.LD.LDstats static method)

 	(moments.Spectrum static method)

 	(moments.Triallele.TriSpectrum static method)

 	(moments.TwoLocus.TLSpectrum static method)

 	from_ms_file() (moments.Spectrum static method)

 	fromfile() (moments.Spectrum static method)

 	Fst() (moments.Spectrum method)

G

 	
 	genotype_matrix() (moments.Spectrum method)

 	get_bootstrap_sets() (in module moments.LD.Parsing)

 	get_genotypes() (in module moments.LD.Parsing)

 	GIM_uncert() (in module moments.Godambe)

 	(in module moments.LD.Godambe)

 	
 	growth() (in module moments.Demographics1D)

 	(in module moments.LD.Demographics1D)

 	(in module moments.TwoLocus.Demographics)

H

 	
 	H() (moments.LD.LDstats method)

 	
 	het_names() (in module moments.LD.Util)

I

 	
 	IM() (in module moments.Demographics2D)

 	IM_pre() (in module moments.Demographics2D)

 	integrate() (moments.LD.LDstats method)

 	(moments.Spectrum method)

 	(moments.Triallele.TriSpectrum method)

 	(moments.TwoLocus.TLSpectrum method)

L

 	
 	LD() (moments.LD.LDstats method)

 	ld_names() (in module moments.LD.Util)

 	LDstats (class in moments.LD)

 	left() (moments.TwoLocus.TLSpectrum method)

 	linear_Poisson_residual() (in module moments.Inference)

 	
 	ll() (in module moments.Inference)

 	ll_multinom() (in module moments.Inference)

 	ll_over_bins() (in module moments.LD.Inference)

 	log() (moments.Spectrum method)

 	(moments.Triallele.TriSpectrum method)

 	LRT_adjust() (in module moments.Godambe)

M

 	
 	make_data_dict_vcf() (in module moments.Misc)

 	map_moment() (in module moments.LD.Util)

 	marginalize() (moments.LD.LDstats method)

 	(moments.Spectrum method)

 	mask_corners() (moments.Spectrum method)

 	mask_fixed() (moments.Triallele.TriSpectrum method)

 	(moments.TwoLocus.TLSpectrum method)

 	mask_infeasible() (moments.Triallele.TriSpectrum method)

 	(moments.TwoLocus.TLSpectrum method)

 	means_from_region_data() (in module moments.LD.Parsing)

 	merge() (moments.LD.LDstats method)

 	
 module

 	moments.Demographics1D

 	moments.Demographics2D

 	moments.Demographics3D

 	moments.Godambe

 	moments.LD.Demographics1D

 	moments.LD.Demographics2D

 	moments.LD.Demographics3D

 	moments.LD.Godambe

 	moments.LD.Inference

 	moments.LD.Parsing

 	moments.LD.Util

 	moments.TwoLocus.Demographics

 	
 	moment_names() (in module moments.LD.Util)

 	
 moments.Demographics1D

 	module

 	
 moments.Demographics2D

 	module

 	
 moments.Demographics3D

 	module

 	
 moments.Godambe

 	module

 	
 moments.LD.Demographics1D

 	module

 	
 moments.LD.Demographics2D

 	module

 	
 moments.LD.Demographics3D

 	module

 	
 moments.LD.Godambe

 	module

 	
 moments.LD.Inference

 	module

 	
 moments.LD.Parsing

 	module

 	
 moments.LD.Util

 	module

 	
 moments.TwoLocus.Demographics

 	module

N

 	
 	names() (moments.LD.LDstats method)

O

 	
 	optimal_sfs_scaling() (in module moments.Inference)

 	optimally_scaled_sfs() (in module moments.Inference)

 	optimize_log() (in module moments.Inference)

 	optimize_log_fmin() (in module moments.Inference)

 	(in module moments.LD.Inference)

 	
 	optimize_log_lbfgsb() (in module moments.Inference)

 	(in module moments.LD.Inference)

 	optimize_log_powell() (in module moments.Inference)

 	(in module moments.LD.Inference)

 	out_of_Africa() (in module moments.Demographics3D)

 	(in module moments.LD.Demographics3D)

P

 	
 	perturb_params() (in module moments.LD.Util)

 	(in module moments.Misc)

 	pi() (moments.Spectrum method)

 	(moments.Triallele.TriSpectrum method)

 	pi2() (moments.TwoLocus.TLSpectrum method)

 	
 	project() (moments.Spectrum method)

 	(moments.Triallele.TriSpectrum method)

 	(moments.TwoLocus.TLSpectrum method)

 	pulse_migrate() (moments.LD.LDstats method)

 	(moments.Spectrum method)

R

 	
 	remove_nonpresent_statistics() (in module moments.LD.Inference)

 	remove_normalized_data() (in module moments.LD.Inference)

 	
 	remove_normalized_lds() (in module moments.LD.Inference)

 	rescale_params() (in module moments.LD.Util)

 	right() (moments.TwoLocus.TLSpectrum method)

S

 	
 	S() (moments.Spectrum method)

 	(moments.Triallele.TriSpectrum method)

 	(moments.TwoLocus.TLSpectrum method)

 	sample() (moments.Spectrum method)

 	scramble_pop_ids() (moments.Spectrum method)

 	set_cache_path() (in module moments.TwoLocus.Demographics)

 	sigmaD2() (in module moments.LD.Inference)

 	snm() (in module moments.Demographics1D)

 	(in module moments.Demographics2D)

 	(in module moments.LD.Demographics1D)

 	(in module moments.LD.Demographics2D)

 	
 	Spectrum (class in moments)

 	split() (moments.LD.LDstats method)

 	(moments.Spectrum method)

 	split_mig() (in module moments.Demographics2D)

 	(in module moments.LD.Demographics2D)

 	steady_state() (moments.LD.LDstats static method)

 	subset_data() (in module moments.LD.Parsing)

 	swap_axes() (moments.Spectrum method)

 	swap_pops() (moments.LD.LDstats method)

T

 	
 	Tajima_D() (moments.Spectrum method)

 	theta_L() (moments.Spectrum method)

 	three_epoch() (in module moments.Demographics1D)

 	(in module moments.LD.Demographics1D)

 	(in module moments.TwoLocus.Demographics)

 	TLSpectrum (class in moments.TwoLocus)

 	to_file() (moments.LD.LDstats method)

 	(moments.Spectrum method)

 	(moments.Triallele.TriSpectrum method)

 	(moments.TwoLocus.TLSpectrum method)

 	
 	tofile() (moments.Spectrum method)

 	TriSpectrum (class in moments.Triallele)

 	two_epoch() (in module moments.Demographics1D)

 	(in module moments.LD.Demographics1D)

 	(in module moments.TwoLocus.Demographics)

U

 	
 	unfold() (moments.Spectrum method)

 	(moments.Triallele.TriSpectrum method)

 	(moments.TwoLocus.TLSpectrum method)

 	
 	unmask_all() (moments.Spectrum method)

W

 	
 	Watterson_theta() (moments.Spectrum method)

Z

 	
 	Zengs_E() (moments.Spectrum method)

 _static/minus.png

_static/plus.png

_static/file.png

_images/dfe_1_13_1.png
Residual
w & &

°

20 40 60 80 100 120 140 160
Allele frequency

_images/dfe_1_14_1.png
Residual

20

60

80 100
Allele frequency

120

140

160

_images/demes_8_1.png
20

0awap

20

demel

_images/dfe_1_10_1.png
Residual

°

L
5

20 40 60 80 100 120 140 160
Allele frequency

_images/dfe_1_20_1.png
Residual

20 40 60 80 100

120 140 160

20 40 60 80
Allele frequency

100

120 140 160

_images/dfe_1_2_0.png
Count.

Residual

0 20 4 60 8 100
Allele frequency

_images/dfe_1_16_1.png
Count.

Residual

20

60

80 100
Allele frequency

120

140

160

_images/dfe_1_19_1.png
Count.

Residual

20

60

80 100
Allele frequency

120

140

160

_images/dfe_1_6_0.png
Count.

Residual

0 20 4 60 8 100
Allele frequency

_images/dfe_1_9_0.png
Residual

20

140

160

20

60

80 100
Allele frequency

120

140

160

_images/demes_14_0.png
60000

50000

40000

deme

30000 size

20000

10000

10° 10° 10* 10° 10?2 10" 10°
time ago (years)

_images/demes_1_0.png
(s1eaK) obe awn

_images/ancestral_misid.png
Count.

1074

105

20

40 60
Allele frequency

80

100

_images/demes_13_0.png
Count

Residual

104

10°

10
0s

00

10 15 20 2

10 5 20 B
Allele frequency

30

_images/demes_7_0.png
Density

100

1071

~O— Neutral
—+— Selected, y=10, h=0.1

H 10 5 20 B 0
Derived allele count

_images/diversity_2_1.png
18

16

14

12

10

singletons
Doubletons.
Tripletons.
Diversity (pi)

o 500 1000 1500 2000 2500 3000 3500 4000

Generations after expansion

nav.xhtml

 Table of Contents

 		
 Welcome to moments’s documentation!

 		
 Introduction

 		
 Citations

 		
 Change log

 		
 1.1.15

 		
 1.1.14

 		
 1.1.13

 		
 1.1.12

 		
 1.1.11

 		
 1.1.10

 		
 1.1.9

 		
 1.1.8

 		
 1.1.7

 		
 1.1.6

 		
 1.1.5

 		
 1.1.4

 		
 1.1.3

 		
 1.1.2

 		
 1.1.1

 		
 1.1.0

 		
 1.0.9

 		
 1.0.8

 		
 1.0.7

 		
 1.0.6

 		
 1.0.5

 		
 1.0.4

 		
 1.0.3

 		
 Installation

 		
 Using conda

 		
 Using pip

 		
 Dependencies and details

 		
 The Site Frequency Spectrum

 		
 The SFS

 		
 Examples

 		
 Spectrum objects in moments

 		
 Manipulating SFS

 		
 Folding

 		
 Projecting

 		
 Marginalizing

 		
 Resampling

 		
 Demographic events

 		
 Population splits and branches

 		
 Admixture and mergers

 		
 Integration

 		
 Size functions

 		
 Integration time and time units

 		
 Migration rates

 		
 Mutation rates and mutation model

 		
 Selection and dominance

 		
 Ancient samples and frozen populations

 		
 Computing summary statistics

 		
 Compute SFS from VCF

 		
 Plotting the SFS

 		
 References

 		
 SFS Inference

 		
 Computing likelihoods

 		
 Optimization

 		
 Single population example

 		
 Two population example

 		
 References

 		
 Multi-population LD statistics

 		
 Linkage disequilibrium

 		
 LD decay curves

 		
 Multiple populations

 		
 Archaic admixture

 		
 Demographic events

 		
 Extinction/marginalization

 		
 Population splits

 		
 Admixture and mergers

 		
 Pulse migration

 		
 Integration

 		
 References

 		
 Parsing LD statistics

 		
 Binned LD decay

 		
 Parsing from a VCF

 		
 Using a recombination map

 		
 Populations and pop-file

 		
 Masking and using bed files

 		
 Computing a subset of statistics

 		
 Phased vs unphased data

 		
 Computing averages and covariances over regions

 		
 Example

 		
 Bootstrapping over multiple regions

 		
 LD statistics in genotype blocks

 		
 References

 		
 Inferring demography with LD

 		
 Likelihood framework

 		
 Defining demographic models

 		
 Running optimization

 		
 Example

 		
 Computing confidence intervals

 		
 Example

 		
 References

 		
 Specifying models with demes

 		
 What is demes?

 		
 Simulating the SFS and LD using a demes model

 		
 Ancient samples

 		
 Alternative samples specification

 		
 Linkage disequilibrium

 		
 Selection and dominance in Demes.SFS

 		
 Using Demes to infer demography

 		
 The options file

 		
 The inference function

 		
 Single-population inference example

 		
 Plotting the results

 		
 Computing confidence intervals

 		
 Two-population inference and uncertainty example

 		
 References

 		
 Two-locus frequency spectrum

 		
 API

 		
 TLSpectrum

 		
 bottlegrowth()

 		
 equilibrium()

 		
 growth()

 		
 set_cache_path()

 		
 three_epoch()

 		
 two_epoch()

 		
 Triallele frequency spectrum

 		
 API

 		
 TriSpectrum

 		
 Demography and genetic diversity

 		
 Measures of genetic diversity

 		
 Single-population demography

 		
 Multiple populations

 		
 DFE inference

 		
 Data

 		
 Mutation rates

 		
 Controlling for demography

 		
 Inferring the DFE

 		
 Caching SFS

 		
 Optimization of the DFE

 		
 Sensitivity to the demographic model

 		
 References

 		
 Linkage disequilibrium and recombination

 		
 Sections

 		
 Selection at two loci

 		
 The two-locus allele frequency spectrum

 		
 Citing this work

 		
 Two-locus haplotype distribution under neutrality

 		
 A quick comment on computational efficiency

 		
 Two neutral loci

 		
 How does selection interact across multiple loci?

 		
 Selection models at two loci

 		
 How do different selection models affect expected LD statistics?

 		
 References

 		
 API for site frequency spectra

 		
 The Spectrum object

 		
 Spectrum

 		
 Miscellaneous functions

 		
 perturb_params()

 		
 make_data_dict_vcf()

 		
 count_data_dict()

 		
 bootstrap()

 		
 Demographic functions

 		
 bottlegrowth()

 		
 growth()

 		
 snm()

 		
 three_epoch()

 		
 two_epoch()

 		
 IM()

 		
 IM_pre()

 		
 bottlegrowth()

 		
 bottlegrowth_split()

 		
 bottlegrowth_split_mig()

 		
 snm()

 		
 split_mig()

 		
 out_of_Africa()

 		
 Inference functions

 		
 ll()

 		
 ll_multinom()

 		
 optimal_sfs_scaling()

 		
 optimally_scaled_sfs()

 		
 linear_Poisson_residual()

 		
 Anscombe_Poisson_residual()

 		
 optimize_log()

 		
 optimize_log_fmin()

 		
 optimize_log_powell()

 		
 optimize_log_lbfgsb()

 		
 Uncertainty functions

 		
 FIM_uncert()

 		
 GIM_uncert()

 		
 LRT_adjust()

 		
 Plotting features

 		
 Single-population plotting

 		
 Multi-population plotting

 		
 API for linkage disequilibrium

 		
 LD statistics class and function

 		
 LDstats

 		
 Demographic functions

 		
 bottlegrowth()

 		
 growth()

 		
 snm()

 		
 three_epoch()

 		
 two_epoch()

 		
 snm()

 		
 split_mig()

 		
 out_of_Africa()

 		
 Utility functions

 		
 het_names()

 		
 ld_names()

 		
 map_moment()

 		
 moment_names()

 		
 perturb_params()

 		
 rescale_params()

 		
 Parsing functions

 		
 bootstrap_data()

 		
 compute_average_stats()

 		
 compute_average_stats_between()

 		
 compute_ld_statistics()

 		
 compute_pairwise_stats()

 		
 compute_pairwise_stats_between()

 		
 get_bootstrap_sets()

 		
 get_genotypes()

 		
 means_from_region_data()

 		
 subset_data()

 		
 Inference and computing confidence intervals

 		
 Inference methods

 		
 Confidence intervals

 		
 Plotting

_images/inference_9_0.png
Count

Residual

10 20 0 40 50 60
Allele frequency

_images/ld_4_0.png
Constant size

100 80 60 40 20 0

time ago (generations)

10000

8000

6000

4000

2000

0

deme
size

Bottleck and recovery

1000 800 600 400 200

time ago (generations)

10000

8000

6000

4000

2000

deme
size

Recent exponential growth

600 400 200

time ago (generations)

10000
8000
6000

deme
4000 size
2000

_images/inference_10_9.png
data model

104
10°
107
10!

100

o popl 20 o popl 20
residuals residuals

_images/inference_6_0.png
30000

25000

20000

15000 deme

size

10000

5000

8000 7000 6000 5000 4000 2000 2000 1000 o
time ago (generations)

_images/ld_7_0.png
o
s
g
]
g
3
8
8
3
g
8
s
8
E
w o w o w o
T § = & & 8
s s & & s 3
s g g g g g o°
g8 8 8 8 8 8
& 8 8 8]
8 8

(suonesauab) obe awiy

Time ago (gens)

_images/ld_8_0.png
25000

20000

15000

10000

time ago (generations)

5000

1071

1072

No admixture
Tpuse =1
Tpuse =200
Tpuse =500
Tpuse = 1000
Tpuse = 2000

1071

Opz

1072

1073

1072

1071 100
P

10t

10?

1072 1071 100 10t 10?

_images/ld_5_0.png
1071

1072

—— Constant 10-3{ — Constant
—— Bottleneck —— Bottleneck
— Exp. growth — Exp. growth
1072 1071 100 10! 102 1072 1071 100 10! 102

_images/ld_6_0.png
o
s
g
]
g
3
8
8
3
8
8
s
8
g
E

W o m o m o w o

2 8 8B R 8] 8 8

S 3 3 8 3 s 8 o

o
9o
M
v

s g g g g g o°

g8 8 8 8 8 8

] 8 8 8]

8 8

(suonesauab) obe awiy

Time ago (gens)

_images/msl_spectra.png
Count.

Proportion

10%

10°

102

10!

100

wn AL

—— Synonymous
—— Missense
—— Loss of function

R e

20

40

60 80 100
Derived allele frequency

120 140 160

20

40

60 80 100
Derived allele frequency

_images/parsing_4_0.png
Statistic

24

— oo -
| — mares ,
221 — maii J s
—_——
2.0 S
Va4
1.8 1 \;g,/
161 -___/
1.4 4 e
~ ”__’
124 >=2
10-5 10-3

_images/parsing_6_0.png
Statistic

— maoo11

10-3

184 oo =
I
1642 .
1.5 1
1.4 4
\ 1.3 1
\
- | 1o)==
10-° 10-3 10-°
r r

_images/sfs_2_1.png
104

10°

107

10!

100

_images/two_locus_selection_10_0.png
p=05,y=-1 -1 p=30.0,y= -1
0s
0s
06 06
04 04
02 02
00 00
00 05 10 15 20 00 05 10 15 20 00 05 10 15

Nag Nag Nag

_images/sfs_1_0.png
10

08

Density

04

02

00

—e— Neutral
- Neg. selection
—f— Pos. selection

10

5 20
Allele frequency

2

30

Ed a0

_images/sfs_2_0.png

_images/two_locus_selection_13_0.png
02

00

Strong selection with epistasis

Hudson (neutrality)
-20,£=-05
-20,£=0
y=-20e=1

-

Hmm

1l....

2

Nag

10

12

_images/two_locus_selection_14_0.png
y= -1, with varying dominance

Ohta-Kimura

y=-Lh=0
—+- y=-Lh=01
-+ y=-1h=025
-¥- y=-1h=05

-4~ y=-1,h=10

1071 100 100

_images/two_locus_selection_11_0.png
p=5.0,y

p=30.0,

00

os

10
Nag

15

20

08

06

04

02

00

00

05 10
Nag

20

08

06

04

02

00

00 05 10
Nag

15

20

_images/two_locus_selection_12_0.png
Weak selection with epistasis

06

0s

= Hudson (neutrality)
m—y=-16=-05
-y
-—y=

_images/two_locus_selection_15_0.png
0.00

-0.02

~0.04

~0.06

-0.08

-0.10

-012

-0.14

y= -1, with varying dominance

4
.2 4
i Neutrality
xS
[A y=-1h=0
S y=-Lh=01
- ,«’,)(y=-1h
¥/“‘/’(—%- y=-1h=
- -&- y=-1h=
x” y=-1h=
10 10° 10!

_images/two_locus_selection_15_1.png
0.00

-0.05

-0.10

-015

-0.20

-025

y= -5, with varying dominance

Neutrality
y=-5h=0
y=-5h=
y==-5.h

’ -¥- y=-5h=

£ -%- y=-5h=

11

1071 100 101

_images/two_locus_selection_14_1.png
1071

y= -5, with varying dominance

>
TR
T

Ohta-Kimura
y=-5h=0
y=-5h=

1071

100 100

_images/two_locus_selection_5_0.png
0s

rho = 0.5 rho = 5.0 rho = 30.0
012
= Hudson
= moments. TwoLocus 0175
010
0150
008 0125
006 0100
0075
004
0050
002
0025
0.00 0.000 -
6 0 12 4 6 0

Nag

_images/two_locus_selection_6_0.png
1071

102

0.00

-0.02

~0.04

~0.06

-0.08

== Ohta & Kimura
—¥ y=-01
—¥ y=-10
—¥— y=-50

—¥— y=-200

1071

100

Neutrality

—¥— y=-o01
—¥ y=-10
—¥— y=-50
—¥— y=-200

1071

100

_images/two_locus_selection_2_0.png
1000

100

Time (seconds)

Time to compute equilibrium FS

Maximum memory usa

ge

—— With jackknife computation

—— With jackknife computation

—— Cached jackknife —— Cached jackknife
1000
a
=
100 20 20 40 50 6070 100 20 0 40 50 60 70
Sample size Sample size

_images/two_locus_selection_4_0.png
Percent error

1071

102

0.00

-0.01

-0.02

-0.03

~0.04

-0.05

Ohta and Kimura
moments, n=20
moments, n=30
moments, n=50
moments, n=80

2R

moments, n=20
moments, n=30
moments, n=50
moments, n=80

1071

100 10!

107

_images/two_locus_selection_8_0.png
100

1071

102

Mzsesye, —-- Ohta-Kimura
oo ¥sae

R -1

) =+ == ::x;i:“:*::z& —+- €= -05

N
10 10° 10!
P
--- Ohta-Kimura
-%- £= -1
—+- £=-05

—v-
—a-

R T
-~

el

e Sihal et o SEt 0L R N,
S S e T L Sy

10 100 10!

_images/two_locus_selection_9_0.png
e .

e,

R e
-
=

A
a7
101 100 10!
P
y=-20
= = e =
Bt ot D
LS
~X
-%- £= -1 R
X
—+- £=-05 \
—e- £=0 X
£=0.
£=1

