
moments
Release 1.1.0

Aaron Ragsdale

Apr 06, 2023

CONTENTS:

1 Introduction 1
1.1 Citations . 1
1.2 Change log . 2

2 Installation 7
2.1 Using conda . 7
2.2 Using pip . 7
2.3 Dependencies and details . 8

3 The Site Frequency Spectrum 9
3.1 The SFS . 9
3.2 Spectrum objects in moments . 12
3.3 Manipulating SFS . 13
3.4 Demographic events . 16
3.5 Integration . 18
3.6 Computing summary statistics . 22
3.7 Compute SFS from VCF . 23
3.8 Plotting the SFS . 23
3.9 References . 24

4 SFS Inference 25
4.1 Computing likelihoods . 25
4.2 Optimization . 26
4.3 References . 31

5 Multi-population LD statistics 33
5.1 Linkage disequilibrium . 33
5.2 Demographic events . 40
5.3 Integration . 41
5.4 References . 42

6 Parsing LD statistics 43
6.1 Binned LD decay . 43
6.2 Parsing from a VCF . 44
6.3 Computing averages and covariances over regions . 45
6.4 Example . 46
6.5 LD statistics in genotype blocks . 50
6.6 References . 51

7 Inferring demography with LD 53
7.1 Likelihood framework . 53

i

7.2 Defining demographic models . 54
7.3 Running optimization . 54
7.4 Computing confidence intervals . 57
7.5 References . 59

8 Specifying models with demes 61
8.1 What is demes? . 61
8.2 Simulating the SFS and LD using a demes model . 61
8.3 Using Demes to infer demography . 69
8.4 Single-population inference example . 71
8.5 Plotting the results . 74
8.6 Computing confidence intervals . 75
8.7 Two-population inference and uncertainty example . 76
8.8 References . 80

9 Two-locus frequency spectrum 81
9.1 API . 81

10 Triallele frequency spectrum 87
10.1 API . 87

11 Demography and genetic diversity 91
11.1 Measures of genetic diversity . 91
11.2 Single-population demography . 92
11.3 Multiple populations . 93

12 DFE inference 95
12.1 Data . 95
12.2 Controlling for demography . 98
12.3 Inferring the DFE . 99
12.4 Sensitivity to the demographic model . 104
12.5 References . 114

13 Linkage disequilibrium and recombination 115
13.1 Sections . 115

14 Selection at two loci 117
14.1 The two-locus allele frequency spectrum . 117
14.2 Two-locus haplotype distribution under neutrality . 118
14.3 How does selection interact across multiple loci? . 122
14.4 References . 135

15 API for site frequency spectra 137
15.1 The Spectrum object . 137
15.2 Miscellaneous functions . 146
15.3 Demographic functions . 148
15.4 Inference functions . 152
15.5 Uncertainty functions . 157
15.6 Plotting features . 159

16 API for linkage disequilibrium 165
16.1 LD statistics class and function . 165
16.2 Demographic functions . 170
16.3 Utility functions . 172
16.4 Parsing functions . 173

ii

16.5 Inference and computing confidence intervals . 177
16.6 Plotting . 184

Bibliography 185

Python Module Index 187

Index 189

iii

iv

CHAPTER

ONE

INTRODUCTION

Note: These docs are under development. In particular, many of the modules have not yet been completed and some
of the extensions are not documented in great detail. If you find any issues, confusing bits, or have suggestions to make
them more complete or clearer, please open an issue or a PR. Thanks!

Welcome to moments! moments implements methods for inferring demographic history and patterns of selection from
genetic data, based on solutions to the diffusion approximations to the site-frequency spectrum (SFS). The SFS imple-
mentation and interface of moments is large based on the ai open source package developed by Ryan Gutenkunst. We
largely reuse ai’s interface but introduced a new simulation engine. This new method is based on the direct computa-
tion of the frequency spectrum without solving the diffusion system. Consequently we circumvent the numerical PDE
approximations and we get rid of the frequency grids used in ai.

moments.LD implements methods for computing linkage disequilibrium statistics and running multi-population demo-
graphic inference using patterns of LD. This extension contains methods for parsing phased or unphased sequencing
data to compute LD-decay for a large number of informative two-locus statistics, and then uses those statistics to infer
demographic history for large numbers of populations.

moments was developed in Simon Gravel’s group in the Human Genetics department at McGill University, with main-
tenance and development by the Gravel Lab and Aaron Ragsdale.

1.1 Citations

If you use moments in your research, please cite:

• Jouganous, J., Long, W., Ragsdale, A. P., & Gravel, S. (2017). Inferring the joint demographic history of multiple
populations: beyond the diffusion approximation. Genetics, 206(3), 1549-1567.

If you use moments.LD in your research, please cite:

• Ragsdale, A. P. & Gravel, S. (2019). Models of archaic admixture and recent history from two-locus statistics.
PLoS Genetics, 15(6), e1008204.

• Ragsdale, A. P. & Gravel, S. (2020). Unbiased estimation of linkage disequilibrium from unphased data. Mol
Biol Evol, 37(3), 923-932.

If you use moments.TwoLocus in your research, please cite:

• Ragsdale, A. P. (2022). Local fitness and epistatic effects lead to distinct patterns of linkage disequilibrium in
protein-coding genes. Genetics, 221(4), iyac097.

1

https://bitbucket.org/gutenkunstlab/dadi/
http://gutengroup.mcb.arizona.edu
http://simongravel.lab.mcgill.ca/Home.html
http://apragsdale.github.io

moments, Release 1.1.0

1.2 Change log

1.2.1 1.1.15

• Fix various bugs in LD parsing methods, including when data is missing and recursion errors in cythonized
genotype calculation methods

• Add steady state solution to LD methods

1.2.2 1.1.14

• Fix bugs when computing multi-population LD statistics using phased haplotype data

• Steady state LD statistics for two-population island models

1.2.3 1.1.13

• Function to parse ANGSD-formatted data as a moments.Spectrum object (issue #106)

• Catch if genotype matrix is too large to compute pairwise LD (issue #105)

1.2.4 1.1.12

• Efficiency improvements in LD Parsing and Integration

• Test demes graph slicing features

1.2.5 1.1.11

• The LD inference methods now allow calculation of f-statistics (f2, f3, f4)

• Demes methods allow multiple sources in pulses

• Demes integration allow for ancient samples

• Fix bugs in L-BFGS-B methods for inference using the SFS

1.2.6 1.1.10

• Add warnings and exceptions if bins are improperly defined in LD.Parsing (Issue #99).

• Remove ld_extensions flag from installation so that all extensions are built automatically.

• Pin cython to ~0.29 until recursion error is fixed

• Allow samples to be specified with a dictionary for SFS calculation with Demes

• Memory-efficient caching of projection in TwoLocus

• Add LD inference using Demes and clean up uncertainty calculations for SFS inference using demes

2 Chapter 1. Introduction

moments, Release 1.1.0

1.2.7 1.1.9

• Allow ancient samples in Demes inference function

• Add selection and dominance to Demes SFS integration function

• Add f2 and f4 statistics to LDstats object

• Allow multiple simultaneous merger events in Demes integration methods

• Add uncertainty functions to Demes SFS inference module

• Refactor Demes SFS inference options (#85)

• Add function to compute genotype matrix from the SFS

• Add function to compute allele frequency threshold LD statistics from TwoLocus spectrum

• Fix factor of 2 discrepancy between LD and TwoLocus mutation model (#60)

1.2.8 1.1.8

• Fix bug that plotted multiple colorbars in plot_single_2d_sfs (issue #82).

• Add L-BFGS-B optimization method to LD inference.

• Fix bug in SFS inference using demes when a branch event time is a variable parameter.

• Fix bug in LD Godambe method that improperly normalized J matrix and cU vector.

1.2.9 1.1.7

• Inference using demes allows for ancestral misidentification estimation (#81).

• Fst computation now has option for all pairwise computations (#80).

• Bug fix when computing LD with an input VCF that includes multiple chromosomes (#78).

• Bug fix when computing LD means over multiple regions.

• Expanded documentation, particularly for clarification of installation steps in docs when using LD parsing meth-
ods (#79), usage of Godambe methods for computing confidence intervals (#77), and more details for LD meth-
ods.

1.2.10 1.1.6

• Many small bug fixes and API improvements to LD parsing, inference, and confidence interval methods.

• Expanded documentation for computing, parsing, and running inference using LD statistics (#73).

• Expand LD examples in repository and bring them up to date with current API (#74).

• Minor improvements to 1D SFS plotting (#64).

1.2. Change log 3

moments, Release 1.1.0

1.2.11 1.1.5

• Use (chrom, pos) tuple as data dictionary key, to avoid conflicts with underscores. Underscores in con-
tig/chromosome names are again supported.

• Add branch function to Spectrum class.

• Fix bug when computing SFS from demes with branches occurring simultaneously (#71).

• Fix bug when computing SFS from demes with pulses occurring simultaneously (#72).

1.2.12 1.1.4

• Fix bugs in Plotting multi-population SFS comparisons that were showing each subplot in a new figure instead
of in a single plot.

• Hide the intrusive scale bar in ModelPlot by default.

1.2.13 1.1.3

• Fix bug in Misc.make_data_dict_vcf that skipped any site with missing data.

• Fix numpy deprecation warning when projecting.

• Documentation updates for miscellaneous functions.

• Fix bug where copying and pickling LDstats objects resulted in a recursion error (#66).

1.2.14 1.1.2

• Fix bug when checking if matplotlib is installed for model plotting (issue #68).

• Now compatible with demes >= 0.1.

1.2.15 1.1.1

• Fix a pesky RecursionError in moments.LD.Inference.sigmaD2.

• Fix bug when simulating LD using Demes if admixture timing coincides with a deme’s end time.

• Fix numpy.float deprecation warning in moments.LD.Numerics.

• Update demes methods to work with demes version 0.1.0a4.

• Improve (or at least change) some of the plotting outputs.

• Protect import of demes if not installed.

4 Chapter 1. Introduction

moments, Release 1.1.0

1.2.16 1.1.0

• Completely rebuilt documentation, now hosted on [Read the Docs](https://moments.readthedocs.io/).

• Tutorials and modules in the documentation for running inference, inferring the DFE, and exploring LD under a
range of selection models.

• More helpful documentation in docstrings.

• Support for [demes](https://moments.readthedocs.io/en/latest/extensions/demes.html).

• Simpler functions to improve Spectrum manipulation and demographic events, such as fs.split(), fs.admix, etc.

• API and numerics overhaul for Triallele and TwoLocus methods.

• Expanded selection models in the TwoLocus module.

• moments.LD methods are now zero-based.

• Reversible mutation model supports a single symmetric mutation rate.

1.2.17 1.0.9

• Numpy version bump from 0.19 to 0.20 creates incompatibility if cython extension are built with different version
than user environment. This more explicitly specifies the numpy version to maintain compatibility (with thanks
to Graham Gower).

1.2.18 1.0.8

• Allow for variable migration rate by passing a function as the migration matrix (with thanks to Ekaterina
Noskova/@noscode).

• Fixes an issue with ModelPlot when splitting 3D and 4D SFS.

1.2.19 1.0.7

• Bug fixes and haplotype parsing in moments.LD.Parsing. (Issues #38 through #42, with thanks to Nathaniel
Pope).

1.2.20 1.0.6

• Updates to installation, so that pip installs dependencies automatically.

• Protect against importing matplotlib if not installed.

• Triallele and TwoLocus now ensure using CSC format sparse matrix to avoid sparse efficiency warnings.

• Streamline test suite, which now works with pytest, as python -m pytests tests.

1.2. Change log 5

https://moments.readthedocs.io/
https://moments.readthedocs.io/en/latest/extensions/demes.html
mailto:Noskova/@noscode

moments, Release 1.1.0

1.2.21 1.0.5

• Fixes install issues using pip: pip install . or pip install git+https://bitbucket.org/
simongravel/moments.git is now functional.

1.2.22 1.0.4

• Stable importing of scipy.optimize nnls function.

• Fixes a plotting bug when ax was set to None (from @noscode - thanks!).

1.2.23 1.0.3

• Options in plotting scripts for showing and saving output.

• Add confidence interval computation for LD.

• Add parsing script for ANGSD frequency spectrum output.

Note that we started tracking changes between versions with version 1.0.2.

6 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

moments now supports Python 3. Because Python is soon discontinuing support for Python 2, we do not actively ensure
that moments remains fully compatable with Python 2, and strongly recommend using Python 3.

2.1 Using conda

moments is available via Bioconda.

The most recent release of moments can be installed by running

conda install -c bioconda moments

The conda channels must be set up to include bioconda, which can be done by running

conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge

2.2 Using pip

A simple way to install moments is via pip. numpy, mpmath, and cython are install requirements, but installing
moments directly from the git repository using pip should install these dependencies automatically:

pip install git+https://bitbucket.org/simongravel/moments.git

This approach can also be used to install the development branch of moments:

pip install git+https://bitbucket.org/simongravel/moments.git@devel

Alternatively, you can clone the git repository

git clone https://bitbucket.org/simongravel/moments.git

and then from within the moments directory (cd moments), run

pip install -r requirements.txt
pip install .

7

https://anaconda.org/bioconda/moments
https://bioconda.github.io/user/install.html#set-up-channels

moments, Release 1.1.0

2.3 Dependencies and details

moments and moments.LD requires a number of dependencies. Minimally, these include

• numpy

• scipy

• cython

• mpmath

• demes

All dependencies are listed in requirements.txt, and can be install together using

pip install -r requirements.txt

We also strongly recommend installing ipython for interactive analyses.

If you are using conda, all dependencies can be installed by navigating to the moments directory and then running

conda install --file requirements.txt

Once dependencies are installed, to install moments, run the following commands in the moments directory:

python setup.py build_ext --inplace
python setup.py install

or

pip install .

Note that you might need sudo privileges to install in this way.

You should then be able to import moments in your python scripts. Entering an ipython or python session, type import
moments. If, for any reason, you have trouble installing moments after following these steps, please submit an Issue.

If you use Parsing from moments.LD, which reads VCF-formatted files and computes LD statistics to compare to
predictions from moments.LD, you will need to additionally install

• hdf5

• scikit-allel

8 Chapter 2. Installation

https://bitbucket.org/simongravel/moments/issues

CHAPTER

THREE

THE SITE FREQUENCY SPECTRUM

This page describes the Site Frequency Spectrum (SFS), how to compute its expectation using moments, manipulate
spectra, implement demographic models using the moments API, and computing and saving spectra from a VCF.

If you use the SFS methods in moments in your research, please cite

• [Jouganous2017] Jouganous, J., Long, W., Ragsdale, A. P., & Gravel, S. (2017). Inferring the joint demographic
history of multiple populations: beyond the diffusion approximation. Genetics, 206(3), 1549-1567.

3.1 The SFS

A site-frequency spectrum is a 𝑝-dimensional histogram, where 𝑝 is the number of populations for which we have data.
Thus, the shape of the SFS is (𝑛0 + 1)× (𝑛1 + 1)× . . . (𝑛𝑝−1 + 1), where 𝑛𝑖 is the haploid sample size in population
𝑖. An entry of the SFS (call it fs) stores the number, density, or probability for SNP frequencies given by the index of
that entry. That is, fs[j, k, l] is the number (or density) of mutations with allele frequencies j in population 0, k
in population 1, and l in population 2. (Note that all indexing, as is typical in Python, is zero-based.)

3.1.1 Examples

It can be helpful to visualize site-frequency spectra if you are new to working with them. In the single-population case,
a SFS is a one-dimensional array. For variable biallelic loci and steady-state demography (no historical size changes,
migrants, etc), the SFS is proportional to 1/𝑖, with total size depending on the mutation rate and sequence length.
Historical size changes and demographic events perturb the SFS from this shape, as does negative or positive selection,
skewing the SFS to lower or higher frequencies, resp.

import moments
import numpy as np
import matplotlib.pylab as plt

sample_size = 40

A neutral SFS
fs_neu = moments.Demographics1D.snm([sample_size])
SFS under negative selection
fs_neg = moments.Spectrum(

moments.LinearSystem_1D.steady_state_1D(sample_size, gamma=-10)
)
SFS under positive selection
fs_pos = moments.Spectrum(

moments.LinearSystem_1D.steady_state_1D(sample_size, gamma=10)
(continues on next page)

9

moments, Release 1.1.0

(continued from previous page)

)

fig, ax = plt.subplots(1, 1, figsize=(8, 4))
ax.plot(fs_neu, ".-", ms=8, lw=1, label="Neutral")
ax.plot(fs_neg, "x-", ms=8, lw=1, label="Neg. selection")
ax.plot(fs_pos, "+-", ms=8, lw=1, label="Pos. selection")
ax.set_xlabel("Allele frequency")
ax.set_ylabel("Density")
ax.legend();

Multi-population SFS can be illustrated as multi-dimensional histograms, such as 2D heat maps. Here, we consider a
very simple model of a population split and both derived populations are the same size as the ancestral population and
do not exchange migrants. Allele frequencies in populations that split more recently will still be quite similar, while
more distantly related populations are expected to have larger allele frequency differences.

sample_sizes = [50, 50]

parameters of `split_mig` are (nu0, nu1, T, m)
T is measured in units of 2Ne generations
fs_recent = moments.Demographics2D.split_mig((1, 1, 0.02, 0), sample_sizes)
fs_older = moments.Demographics2D.split_mig((1, 1, 0.15, 0), sample_sizes)

assume theta = 20000, and then resample to fake data
fs_recent = (20000 * fs_recent).sample()
fs_older = (20000 * fs_older).sample()

moments.Plotting.plot_single_2d_sfs(fs_recent)
moments.Plotting.plot_single_2d_sfs(fs_older)

10 Chapter 3. The Site Frequency Spectrum

moments, Release 1.1.0

3.1. The SFS 11

moments, Release 1.1.0

3.2 Spectrum objects in moments

SFS are stored as moments.Spectrum objects. If you are familiar with dadi’s Spectrum objects, then you already will
know your way around a moments.Spectrum object. moments has built off the dadi SFS construction, manipulation,
and demographic specification, with minor adjustments that reflect the differences between the simulation engines and
parameterizations.

Spectrum objects are a subclass of numpy.masked_array, so that standard array manipulation is possible. Indexing
also works the same way as a typical array, so that fs[2, 3, 5] will return the entry in the SFS corresponding to
allele frequencies (2, 3, 5) (here, in a three-population SFS). Similarly, we can check if the SFS is masked at a given
entry. For example, fs.mask[0, 0] returns whether the “fixed” bin (where no samples carry the derived allele) is
ignored.

A Spectrum object has a few additional useful attributes:

• fs.pop_ids: A list of population IDs (as strings) for each population in the SFS.

• fs.sample_sizes: A list of sample sizes (as integers) corresponding to the shape of the SFS.

• fs.folded: If True, the SFS is folded, meaning we polarize allele frequencies by the minor allele frequency. If
False, the SFS is polarized by the derived allele.

12 Chapter 3. The Site Frequency Spectrum

https://bitbucket.org/ryangutenkunst/dadi.git

moments, Release 1.1.0

3.3 Manipulating SFS

Along with standard array manipulations, there are operations specific to SFS. Some of these are equivalent to standard
array operations, but we ensure that the masking and population IDs are updated properly.

3.3.1 Folding

Folding a SFS removes information about how SNPs are polarized, so that the Spectrum stores counts of mutations
with a given minor allele frequency. To fold a SFS, we call fold(), which returns a folded Spectrum object.

For example, the standard neutral model of sample size 10,

fs = moments.Demographics1D.snm([10])
fs

Spectrum([-- 1.0 0.4999999999999999 0.33333333333333326 0.25 0.2
0.16666666666666666 0.14285714285714285 0.125 0.1111111111111111 --], folded=False, pop_
→˓ids=None)

can be folded to the minor allele frequency, which updates the allele counts in the minor allele frequency bins and the
mask:

fs_folded = fs.fold()
fs_folded

Spectrum([-- 1.1111111111111112 0.6249999999999999 0.4761904761904761
0.41666666666666663 0.2 -- -- -- -- --], folded=True, pop_ids=None)

When folding multi-dimensional SFS, note that the folding occurs over the global minor allele frequency.

3.3.2 Projecting

SFS projection takes a Spectrum of some sample size and reduces the sample size in one or more populations. The
output Spectrum sums over all possible down-samplings so that it is equivalent to having sampled a smaller sample
size to begin with.

fs_proj = fs.project([6])
fs_proj

Spectrum([-- 0.9999999999999996 0.49999999999999994 0.33333333333333354
0.24999999999999994 0.19999999999999996 --], folded=False, pop_ids=None)

For multi-dimensional frequency spectra, we must pass a list of sample sizes of equal length to the dimension of the
SFS:

fs = moments.Spectrum(np.random.rand(121).reshape((11, 11)))
fs_proj = fs.project([6, 4])
fs_proj

3.3. Manipulating SFS 13

moments, Release 1.1.0

Spectrum([[-- 1.9948878267740595 1.7283833831873054 1.73732504778059
1.361451854778534]

[1.9644248523024241 1.8493684567132138 1.9453737771234196
1.7393877889305676 1.7118050950087182]

[1.4658562378689899 1.9668516364659765 2.031982004524399
1.9279764660450593 1.9350020193867488]

[1.2960817961021882 1.8186376885188749 1.7464888972268522
1.7926566537918327 2.0651198235724806]

[1.2332051720644557 1.7444577194428192 1.712738339591321
1.6715860671955958 2.3590054151219237]

[1.676783201525725 1.5862885922524417 1.6987939560322936
1.5759286146477345 1.8198224789028643]

[2.0396880200564897 1.8901083442756392 1.8384809973409861
1.84009209059203 --]], folded=False, pop_ids=None)

3.3.3 Marginalizing

If a population goes extinct, or if we want to subset a SFS to some focal populations, we use the marginalize()
function. This function takes a list of population indexes as input, and removes those indexes from the output SFS.
The array operation is simply a sum over those axes, but the marginalization function also preserves population IDs if
given.

For example, given a three-population spectrum

fs = moments.Spectrum(np.ones((5, 5, 5)), pop_ids=["A", "B", "C"])
fs

Spectrum([[[-- 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]]

[[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]]

[[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]]

[[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]]

[[1.0 1.0 1.0 1.0 1.0]
(continues on next page)

14 Chapter 3. The Site Frequency Spectrum

moments, Release 1.1.0

(continued from previous page)

[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 1.0]
[1.0 1.0 1.0 1.0 --]]], folded=False, pop_ids=['A', 'B', 'C'])

we can view the one-population SFS, here the first population:

fs_marg = fs.marginalize([1, 2])
fs_marg

Spectrum([-- 25.0 25.0 25.0 --], folded=False, pop_ids=['A'])

or the joint two-population SFS for population indexes 1 and 2:

fs_marg = fs.marginalize([0])
fs_marg

Spectrum([[-- 5.0 5.0 5.0 5.0]
[5.0 5.0 5.0 5.0 5.0]
[5.0 5.0 5.0 5.0 5.0]
[5.0 5.0 5.0 5.0 5.0]
[5.0 5.0 5.0 5.0 --]], folded=False, pop_ids=['B', 'C'])

Note that the population IDs stay consistent after marginalizing.

3.3.4 Resampling

We can resample a new SFS from a given Spectrum using two approaches. First, a standard assumption is that entries
in an “expected” SFS give the expectation of counts within each bin, and data follows a Poisson distribution with rates
equal to the bin values. Then sample() creates a Poisson-sampled SFS:

fs = moments.Demographics1D.snm([10]) * 1000
fs_pois = fs.sample()
fs_pois

Spectrum([-- 1056 456 339 255 196 148 154 121 108 --], folded=False, pop_ids=None)

Alternatively, we could resample and enforce that we obtain a SFS with the same number of segregating sites:

fs_fixed = fs.fixed_size_sample(np.rint(fs.S()))
print(f"number of sites in input:", f"{fs.S():.2f}")
print(f"number of sites in resampled SFS:", fs_fixed.S())
fs_fixed

number of sites in input: 2828.97
number of sites in resampled SFS: 2829

Spectrum([-- 977 507 312 275 201 172 140 138 107 --], folded=False, pop_ids=None)

3.3. Manipulating SFS 15

moments, Release 1.1.0

3.4 Demographic events

When defining demographic models with multiple populations, we need to apply demographic events such as popula-
tion splits, mergers, and admixtures. These operations often change the dimension or size of the SFS, so they do not
act in-place. Instead, they return a new Spectrum object, similar to the manipulations in the previous section.

3.4.1 Population splits and branches

New in moments version 1.1, the Spectrum class includes functions to directly apply demographic events. A population
split is called using fs.split(idx, n0, n1), where the population indexed by idx splits into n0 and n1 lineages.
The split function also takes a new_ids keyword argument, where we can specify the population IDs of the two new
populations after the split. Note that n0 and n1 cannot sum to larger than the current sample size of the population that
we are splitting.

For example, to split a single population with 6 tracked lineages into two populations with 3 lineages in each population:

fs = moments.Demographics1D.snm([6])
fs_split = fs.split(0, 3, 3)
fs_split

Spectrum([[-- 0.4999999999999997 0.09999999999999999 0.016666666666666653]
[0.4999999999999997 0.29999999999999993 0.14999999999999986
0.049999999999999996]

[0.09999999999999999 0.14999999999999986 0.14999999999999997
0.09999999999999995]

[0.016666666666666653 0.049999999999999996 0.09999999999999995 --]], folded=False, pop_
→˓ids=None)

If we use new_ids, we can also keep track of population ids after a split event:

fs = moments.Demographics2D.snm([6, 2], pop_ids=["A", "B"])
fs

Spectrum([[-- 0.24999999999999994 0.017857142857142853]
[0.7500000000000001 0.21428571428571433 0.03571428571428571]
[0.2678571428571428 0.17857142857142852 0.053571428571428506]
[0.11904761904761908 0.1428571428571428 0.07142857142857138]
[0.053571428571428506 0.10714285714285701 0.08928571428571426]
[0.021428571428571408 0.07142857142857144 0.10714285714285715]
[0.00595238095238095 0.035714285714285705 --]], folded=False, pop_ids=['A', 'B'])

fs_split = fs.split(0, 4, 2, new_ids=["C", "D"])
fs_split

Spectrum([[[-- 0.24999999999999994 0.017857142857142853]
[0.24999999999999994 0.07142857142857141 0.0119047619047619]
[0.017857142857142853 0.011904761904761899 0.003571428571428567]]

[[0.49999999999999994 0.14285714285714285 0.0238095238095238]
[0.14285714285714285 0.09523809523809523 0.02857142857142854]
[0.0238095238095238 0.028571428571428543 0.014285714285714268]]

(continues on next page)

16 Chapter 3. The Site Frequency Spectrum

moments, Release 1.1.0

(continued from previous page)

[[0.10714285714285711 0.0714285714285714 0.0214285714285714]
[0.0714285714285714 0.0857142857142856 0.0428571428571428]
[0.0214285714285714 0.042857142857142795 0.0357142857142857]]

[[0.0238095238095238 0.028571428571428543 0.01428571428571427]
[0.02857142857142854 0.057142857142857086 0.047619047619047616]
[0.014285714285714268 0.047619047619047616 0.07142857142857142]]

[[0.003571428571428567 0.007142857142857133 0.00595238095238095]
[0.007142857142857134 0.023809523809523805 0.035714285714285705]
[0.00595238095238095 0.035714285714285705 --]]], folded=False, pop_ids=['C', 'B', 'D'])

As of version 1.1.5, we can apply a “branch” event. This is conceptually similar to a split, but simpler in that a child
population branches off from a parental population. In this case, we just need to give the sample size of the new child
population (and it’s new population ID), and the parental population is left with the same number of lineages minus the
size of the new population, and its population ID (if given) remains unchanged.

fs = moments.Demographics1D.snm([5], pop_ids=["A"])
fs_branch = fs.branch(0, 2, new_id="B")
fs_branch

Spectrum([[-- 0.40000000000000013 0.05000000000000001]
[0.6000000000000001 0.30000000000000004 0.1]
[0.15000000000000002 0.2 0.15000000000000002]
[0.03333333333333334 0.10000000000000003 --]], folded=False, pop_ids=['A', 'B'])

Note: Previous versions of moments required calling functions such as moments.Manips.split_1D_to_2D(fs,
n0, n1) or moments.Manips.split_3D_to_4D_2(fs, n0, n1). The new API (fs.split(idx, n0, n1))
wraps the different split functions in moments.Manips so that we don’t need to worry about picking the correct split
function.

3.4.2 Admixture and mergers

Here, we consider two types of admixture events. First, two populations mix with given proportions to form a new
population (which we will call an “admix” event). And second, one population contributes some proportion to another
population in the SFS (which we call a “pulse migration” event). In both cases, lineages within the SFS are moved
from one or more populations to another, and its size and possibly dimension can change.

To mix two population with a given proportion, we use fs.admix(idx0, idx1, num_lineages, proportion),
where proportion is the proportion of the new population that comes from population idx0, and 1-proportion comes
from population indexed by idx1. The number of lineages is the sample size in the new admixed population, and
the sample sizes in the source populations necessarily decrease by that same amount. Note that if the sample size
of a source population equals the number of lineages that are moved, that source population no longer exists and the
dimension decreases by one.

For example, in a two-population SFS, we can look at a few different scenarios of admixture and sample sizes:

fs = moments.Spectrum(np.ones((11, 11)))
print("original SFS has sample size", fs.sample_sizes)

(continues on next page)

3.4. Demographic events 17

moments, Release 1.1.0

(continued from previous page)

fs_admix = fs.admix(0, 1, 10, 0.25)
print("admix SFS has size", fs_admix.sample_sizes, "after moving 10 lineages")
fs_admix2 = fs.admix(0, 1, 5, 0.5)
print("second admix SFS has size", fs_admix2.sample_sizes, "after moving 5 lineages")

original SFS has sample size [10 10]
admix SFS has size [10] after moving 10 lineages
second admix SFS has size [5 5 5] after moving 5 lineages

And to account for population IDs after admixture:

fs = moments.Spectrum(np.ones((9, 7)), pop_ids=["A", "B"])
print("original SFS has size", fs.sample_sizes, "and pop ids", fs.pop_ids)
fs_admix = fs.admix(0, 1, 4, 0.25, new_id="C")
print("admix SFS has size", fs_admix.sample_sizes, "and pop ids", fs_admix.pop_ids,

"after moving 4 lineages into new population C")

original SFS has size [8 6] and pop ids ['A', 'B']
admix SFS has size [4 2 4] and pop ids ['A', 'B', 'C'] after moving 4 lineages into new␣
→˓population C

3.5 Integration

moments integrates the SFS forward in time by calling fs.integrate(). At a minimum, we need to pass the
population size(s) nu and the integration time T. All parameters are scaled by a reference effective population size, so
that time is measured in units of 2𝑁𝑒 generations, sizes are relative to this same 𝑁𝑒, and mutation and migration rates
and the selection coefficient is scaled by 2𝑁𝑒.

3.5.1 Size functions

The integrate() function can take either a list of relative sizes, equal to the number of populations represented by
the SFS, or it can take a function that returns a list of population sizes over time.

For example, to integrate a two-population SFS with the first population having relative size 2.0 (double the reference
size), and the second having size 0.1 (one-tenth the relative size) for 0.05 time units:

fs = moments.Demographics2D.snm([10, 10])
fs.integrate([2.0, 0.1], 0.05)

To specify a size function that changes over time, for example an exponential growth model, we can instead pass a size
function to the integration method:

fs = moments.Demographics1D.snm([10])
nu0 = 0.5
nuF = 2.0
T = 0.2
nu_func = lambda t: [nu0 * np.exp(np.log(nuF / nu0) * t / T)]
print("size at start of epoch:", nu_func(0))
print("size at end of epoch:", nu_func(T))
fs.integrate(nu_func, T)

18 Chapter 3. The Site Frequency Spectrum

moments, Release 1.1.0

size at start of epoch: [0.5]
size at end of epoch: [1.9999999999999996]

3.5.2 Integration time and time units

Unlike coalescent simulators, such as msprime, integration times in moments are in units of 2𝑁𝑒 generations. Thus,
typical integration times for many demographic scenarios could be much smaller than one.

Times are not cummulative when integrating multiple epochs - each time integrate() is called, internally time
starts from zero by default. Thus, when defining multiple epochs with size functions, keep in mind that time for that
epoch runs from zero to the integration time T.

3.5.3 Migration rates

Migration between populations is specified by the migration matrix, with has shape 𝑝
𝑡𝑖𝑚𝑒𝑠𝑝, where 𝑝 is the number of populations represented by the SFS. The 𝑖-th row of the migration matrix gives the
migration rates from each other population into the population indexed by 𝑖. Because rates are rescaled by the effective
population size, the entry M[i, j] gives the migration rate 2*Ne*m_ij, where m_ij is the per-generation probability
of a lineage in population i having its parent in population j. Note that the diagonal elements of M are ignored.

For example, to integrate a two-population SFS with migration:

fs = moments.Demographics2D.snm([10, 10])
M = np.array([

[0, 2.0],
[0.75, 0]

])
fs.integrate([2, 3], 0.05, m=M)

3.5.4 Mutation rates and mutation model

By default, moments uses an infinite-sites model (ISM). Then the mutation rate 𝜃 is the population-size scaled mutation
rate multiplied by the number of loci: theta = 4*Ne*u*L. By default, theta is set to 1.

Luckily, we do not often need to worry about setting theta, because the ISM guarantees that the expected count in
each frequency bin of the SFS scales linearly in the mutation rate. This means that we can happily integrate with the
default theta and only rescale the SFS at the end:

theta = 100
fs_theta = moments.LinearSystem_1D.steady_state_1D(20) * 100
fs_theta = moments.Spectrum(fs_theta)
fs_theta.integrate([2.0], 0.1, theta=theta)

fs = moments.Demographics1D.two_epoch((2.0, 0.1), [20]) # default theta = 1
fs = theta * fs

print(fs_theta.S())
print(fs.S())

395.6948077081298
395.69480770813

3.5. Integration 19

moments, Release 1.1.0

Reversible mutations

Unlike dadi, which solves the diffusion equation directly and can only simulate under the ISM, the moments-based
engine in moments lets us accurately track the density of the “fixed” bins. That is, we can compute not just the distri-
bution of segregating mutation frequencies, but also the probability that a locus is monomorphic in a sample for the
derived or ancestral allele.

To compute a SFS in which we track monomorphic loci, we use a reversible mutation model, which we specify by
setting finite_genome=True. When simulating under the finite genome model, the mutation rate is no longer scaled
by the number of loci, L. Instead, the mutation rates are simply theta_fd=4*Ne*u and theta_bd=4*Ne*v where u
and v are the forward and backward mutation rates, respectively. Therefore, theta_fd and theta_bd are typically
much less than 1 (and in fact the model breaks down for scaled mutation rates around 1).

To simulate under the reversible mutation model, we first initialize the steady-state SFS with mask_corners=False,
and then apply demographic events as normal and integrate using finite_genome=True:

theta_fd = 0.0005 # 4*Ne*u, with Ne = 1e4 and u = 1.25e-8
theta_bd = 0.001 # the backward mutation rate is double the forward rate
fs = moments.LinearSystem_1D.steady_state_1D_reversible(

20, theta_fd=theta_fd, theta_bd=theta_bd) # sample size = 20
fs = moments.Spectrum(fs, mask_corners=False)

fs.integrate(
[5.0], 0.2, finite_genome=True, theta_fd=theta_fd, theta_bd=theta_bd)

Note that if the forward and backward mutation rates are equal, we can use theta to set both mutation rates (which
must be set, as theta must be less than 1).

Illustration: ancestral state misidentification

In SFS analyses, a typical confounder is the misidentification of the ancestral allele. This occurs because polarization
requires estimating the ancestral state of a locus, which is typically done by comparing to one or more outgroup species
in a sequence alignment. For humans, we typically use chimpanzee and other great apes to infer the ancstral allele.

At longer evolutionary timescales, it is not uncommon for multiple independent mutations to occur at the same locus,
so that when comparing to an outgroup species we classify some derived mutations as ancestral and some ancestral
mutations as derived. For humans, the rate of ancestral misidentification is typically in the 1-3% range, depending on
the method used to polarize alleles.

For example, we can simulate using rough parameters (𝑢 = 1.25 × 10−8, 𝑁𝑒 = 104, divergence of 6 million years,
and a generation time of 25 years) and symmetric mutation rates to see the effect of polarizing based on the allele in a
chimp sequence. Here, if the chimp carries the derived allele, we will instead assume the ancestral allele is derived:

Ne = 1e4
u = 1.25e-8
theta = 4 * Ne * u
generation_time = 25
divergence_years = 6e6
T = divergence_years / generation_time / 2 / Ne

fs = moments.LinearSystem_1D.steady_state_1D_reversible(
101, theta_fd=theta, theta_bd=theta)

fs = moments.Spectrum(fs, mask_corners=False)

fs = fs.split(0, 100, 1)
(continues on next page)

20 Chapter 3. The Site Frequency Spectrum

moments, Release 1.1.0

(continued from previous page)

fs.integrate([1, 1], T, finite_genome=True, theta=theta)

fs_polarized = fs[:,0] + fs[::-1,1]
fs_polarized.mask_corners()

Then visualizing using moments.Plotting.plot_1d_fs(fs_polarized), we can see the uptick at high-frequency
variants due to ancestral misidentification - that is, recurrent mutations along the lineage leading from humans to
chimps:

Fig. 3.1: Excess of high-frequency derived mutations due to ancestral misspecification.

3.5.5 Selection and dominance

One of the great benefits to forward simulators is their ability to include the effects of selection and dominance with
little extra cost. In the selection model implemented in moments, genotype fitnesses are given relative to the ancestral
homozygous genotype (i.e. relative fitness of aa is 1), so that heterozygous genotypes (Aa) have relative fitness 1+2ℎ𝑠
and homozygous derived genotypes (AA) have relative fitness 1 + 2𝑠.

When ℎ = 1/2, selection is additive (or genic), which corresponds to haploid copies of the derived allele having average
fitness 1 + 𝑠. If h is unspecified, the selection model defaults to additivity (ℎ = 1/2), and if gamma is unspecified, we
default to neutrality.

Note: We assume |𝑠| ≪ 1, so that 𝑠2 and higher order terms can be ignored. For strong selection in a moments
framework, see recent advances from [Krukov2021].

moments takes scaled selection coefficients 𝛾 = 2𝑁𝑒𝑠 and dominance coefficients ℎ as keyword parameters when
initializing the SFS and integrating. The reference 𝑁𝑒 is often taken as the ancestral effective population size.

3.5. Integration 21

moments, Release 1.1.0

gamma = -5
h = 0.1
ns = 30

fs = moments.LinearSystem_1D.steady_state_1D(ns, gamma=gamma, h=h)
fs = moments.Spectrum(fs)
print("Tajima's D (before expansion):", fs.Tajima_D())

fs.integrate([3], 0.2, gamma=gamma, h=h)
print("Tajima's D (after expansion):", fs.Tajima_D())

Tajima's D (before expansion): -0.643870774090141
Tajima's D (after expansion): -1.1502872304492777

Simulating selection with multiple populations works similarly. We can specify gamma and h as scalar values, which
implies that the allele has the same selection and dominance effect in each population. We can instead simulate
population-specific selection and dominance coefficients by setting gamma and/or h as a list of length equal to the
number of populations in the spectrum, with indexing matching the ordering of the populations in the spectrum object.

3.5.6 Ancient samples and frozen populations

So far, in all the examples we’ve seen the output SFS integrates all populations until the same end time. If one or more
of the sampled populations are non-contemporary, we need to “freeze” those populations at their time of sampling.
This is done by specifying which populations to freeze using the frozen argument.

For example, if we sample two populations that split 100kya, and one population consisting of ancient samples from
20kya, we integrate the first 80 thousand years as normal, and then the last 20 thousand years with the ancient population
frozen:

Ne = 1e4
generation_time = 25
T1 = 80e3 / 2 / Ne / generation_time
T2 = 20e3 / 2 / Ne / generation_time
migrate = 0.5

fs = moments.Demographics2D.snm([10, 10])
fs.integrate([1, 1], T1, m=[[0, migrate], [migrate, 0]])
fs.integrate([1, 1], T1, m=[[0, migrate], [migrate, 0]], frozen=[False, True])

3.6 Computing summary statistics

moments allows us to compute a handful of summary statistics from the SFS. For single populations, we can get
Watterson’s 𝜃, the diversity 𝜋, or Tajima’s 𝐷 directly from the SFS:

fs = moments.Demographics1D.two_epoch((3.0, 0.2), [20])
print("Watterson's theta:", fs.Watterson_theta())
print("Diversity:", fs.pi())
snm = moments.Demographics1D.snm([20])
print("Tajima's D at steady state:", snm.Tajima_D())
print("Tajima's D after expansion:", fs.Tajima_D())

22 Chapter 3. The Site Frequency Spectrum

moments, Release 1.1.0

Watterson's theta: 1.291270898392208
Diversity: 1.128986048415916
Tajima's D at steady state: 3.1116722926989843e-16
Tajima's D after expansion: -0.37656997453348207

For multi-population spectra, we can also compute FST using Weir and Cokerham’s (1984) method, which generalizes
to any number of populations greater than one:

fs = moments.Demographics2D.snm([10, 10])
print("FST immediately after split:", fs.Fst())
fs.integrate([1, 1], 0.05)
print("FST after isolation of 0.05*2*Ne gens:", fs.Fst())
fs.integrate([1, 1], 0.05)
print("FST after isolation of 0.1*2*Ne gens:", fs.Fst())

FST immediately after split: 0.05263157894736842
FST after isolation of 0.05*2*Ne gens: 0.09774436090225562

FST after isolation of 0.1*2*Ne gens: 0.13875598086124397

Note that FST is sensitive to sample sizes: smaller sample sizes artificially inflate the “true” divergence.

print("10 samples each:", moments.Demographics2D.snm([10, 10]).Fst())
print("100 samples each:", moments.Demographics2D.snm([100, 100]).Fst())

10 samples each: 0.05263157894736842

100 samples each: 0.005025125628140709

3.7 Compute SFS from VCF

moments supports computing a SFS from files in VCF format, given a population information file. This takes two steps.
We first parse the VCF using and we then pass that data dictionary to the Spectrum class:

data_dict = moments.Misc.make_data_dict_vcf(vcf_filename, popinfo_filename)
fs = moments.Spectrum.from_data_dict(data_dict)

3.8 Plotting the SFS

moments comes pre-installed with a number of plotting functions, which can be called from moments.Plotting.
These include functions to plot individual SFS, or to compare two SFS (for example, to compare a model to data).
These functions can be used out-of-the-box, or serve as inspiration for your own matplotlib adventures. To see what
plotting functions are available and view their documentation, head to the moments API .

3.7. Compute SFS from VCF 23

moments, Release 1.1.0

3.9 References

24 Chapter 3. The Site Frequency Spectrum

CHAPTER

FOUR

SFS INFERENCE

4.1 Computing likelihoods

Following [Sawyer1992] the distribution of mutation frequencies is treated as a Poisson random field, so that composite
likelihoods (in which we assume mutations are independent) are computed by taking Poisson likelihoods over bins in
the SFS. We typically work with log-likelihoods, so that the log-likelihood of the data (𝐷) given the model (𝑀) is

logℒ =
∑︁
𝑖

𝐷𝑖 log𝑀𝑖 −𝑀𝑖 − log𝐷𝑖!

where 𝑖 indexes the bins of the SFS.

Likelihoods can be computed from moments.Inference:

import moments
import numpy as np

theta = 1000
model = theta * moments.Demographics1D.snm([10])

data = model.sample()

print(model)
print(data)

[-- 1000.0 499.9999999999999 333.33333333333326 250.0 200.0
166.66666666666666 142.85714285714286 125.0 111.1111111111111 --]
[-- 956 529 334 246 205 164 146 123 127 --]

print(moments.Inference.ll(model, data))

-36.09050060346999

When simulating under some demographic model, we usually use the default theta of 1, because the SFS scales
linearly in the mutation rate. When comparing to data in this case, we need to rescale the model SFS. It turns out that
the maximum-likelihood rescaling is that which makes the total number of segregating sites in the model equal to the
total number in the data:

data = moments.Spectrum([0, 3900, 1500, 1200, 750, 720, 600, 400, 0])
model = moments.Demographics1D.two_epoch((2.0, 0.1), [8])

(continues on next page)

25

moments, Release 1.1.0

(continued from previous page)

print("Number of segregating sites in data:", data.S())
print("Number of segregating sites in model:", model.S())
print("Ratio of segregating sites:", data.S() / model.S())

opt_theta = moments.Inference.optimal_sfs_scaling(model, data)
print("Optimal theta:", opt_theta)

Number of segregating sites in data: 9070.0
Number of segregating sites in model: 2.7771726368386327
Ratio of segregating sites: 3265.911481226729
Optimal theta: 3265.911481226729

Then we can compute the log-likelihood of the rescaled model with the data, which will give us the same answer as
moments.Inference.ll_multinom using the unscaled data:

print(moments.Inference.ll(opt_theta * model, data))
print(moments.Inference.ll_multinom(model, data))

-59.880644681554486
-59.880644681554486

4.2 Optimization

moments optimization is effectively a wrapper for scipy optimization routines, with some features specific to working
with SFS data. In short, given a demographic model defined by a set of parameters, we try to find those parameters
that minimize the negative log-likelihood of the data given the model. There are a number of optimization functions
available in moments.Inference:

• optimize and optimize_log: Uses the BFGS algorithm.

• optimize_lbfgsb and optimize_log_lbfgsb: Uses the L-BFGS-B algorithm.

• optimize_log_fmin: Uses the downhill simplex algorithm on the log of the parameters.

• optimize_powell and optimize_log_powell: Uses the modified Powell’s method, which optimizes slices
of parameter space sequentially.

More information about optimization algorithms can be found in the scipy documentation.

With each method, we require at least three inputs: 1) the initial guess, 2) the data SFS, and 3) the model function that
returns a SFS of the same size as the data.

Additionally, it is common to set the following:

• lower_bound and upper_bound: Constraints on the lower and upper bounds during optimization. These are
given as lists of the same length of the parameters.

• fixed_params: A list of the same length of the parameters, with fixed values given matching the order of the
input parameters. None is used to specify parameters that are still to be optimized.

• verbose: If an integer greater than 0, prints updates of the optimization procedure at intervals given by that
spacing.

For a full description of the various inference functions, please see the SFS inference API .

26 Chapter 4. SFS Inference

https://docs.scipy.org/doc/scipy/reference/optimize.html

moments, Release 1.1.0

4.2.1 Single population example

As a toy example, we’ll generate some fake data from a demographic model and then reinfer the input parameters
of that demographic model. The model is an instantaneous bottleneck followed by exponential growth, implemented
in moments.Demographics1D.bottlegrowth, which takes parameters [nuB, nuF, T] and the sample size. Here
nuB is the bottleneck size (relative to the ancestral size), nuF is the relative final size, and T is the time in the past the
bottleneck occurred (in units of 2𝑁𝑒 generations).

nuB = 0.2
nuF = 3.0
T = 0.4

n = 60 # the haploid sample size

fs = moments.Demographics1D.bottlegrowth([nuB, nuF, T], [n])

theta = 2000 # the scaled mutation rate (4*Ne*u*L)
fs = theta * fs
data = fs.sample()

The input demographic model (assuming an 𝑁𝑒 of 10,000), plotted using demesdraw:

We then set up the optimization inputs, including the initial parameter guesses, lower bounds, and upper bounds, and
then run optimization. Here, I’ve decided to use the log-L-BFGS-B method, though there are a number of built in
options (see previous section).

p0 = [0.2, 3.0, 0.4]
lower_bound = [0, 0, 0]
upper_bound = [None, None, None]
p_guess = moments.Misc.perturb_params(p0, fold=1,

lower_bound=lower_bound, upper_bound=upper_bound)
(continues on next page)

4.2. Optimization 27

https://github.com/grahamgower/demesdraw

moments, Release 1.1.0

(continued from previous page)

model_func = moments.Demographics1D.bottlegrowth

opt_params = moments.Inference.optimize_log_lbfgsb(
p0, data, model_func,
lower_bound=lower_bound,
upper_bound=upper_bound)

model = model_func(opt_params, data.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, data)
model = model * opt_theta

The reinferred parameters:

Params nuB nuF T theta
Input 0.2 3.0 0.4 2000
Refit 0.1874 2.977 0.403 2.074e+03

We can also visualize the fit of the model to the data:

moments.Plotting.plot_1d_comp_Poisson(model, data)

28 Chapter 4. SFS Inference

moments, Release 1.1.0

Confidence intervals

We’re often interested in estimating the precision of the inferred parameters from our best fit model. To do this, we
can compute a confidence interval for each free parameter from the model fit. Methods implemented in moments to
compute, particularly the method based on the Godambe Information Matrix [Coffman2016], were first implemented
in dadi by Alec Coffman, who’s paper should be cited if these methods are used.

See the API documentation for uncertainty functions for information on their usage.

4.2.2 Two population example

Here, we will create some fake data for a two-population split-migration model, and then re-infer the input parameters
to the model used to create that data. This example uses the optimize_log_fmin optimization function. We’ll also
use the FIM_uncert function to compute uncertainties (reported as standard errors).

input_theta = 10000
params = [2.0, 3.0, 0.2, 2.0]
model_func = moments.Demographics2D.split_mig
model = model_func(params, [20, 20])
model = input_theta * model
data = model.sample()

p_guess = [2, 2, .1, 4]
lower_bound = [1e-3, 1e-3, 1e-3, 1e-3]
upper_bound = [10, 10, 1, 10]

p_guess = moments.Misc.perturb_params(
p_guess, lower_bound=lower_bound, upper_bound=upper_bound)

opt_params = moments.Inference.optimize_log_fmin(
p_guess, data, model_func,
lower_bound=lower_bound, upper_bound=upper_bound,
verbose=20) # report every 20 iterations

refit_theta = moments.Inference.optimal_sfs_scaling(
model_func(opt_params, data.sample_sizes), data)

uncerts = moments.Godambe.FIM_uncert(
model_func, opt_params, data)

print_params = params + [input_theta]
print_opt = np.concatenate((opt_params, [refit_theta]))

print("Params\tnu1\tnu2\tT_div\tm_sym\ttheta")
print(f"Input\t" + "\t".join([str(p) for p in print_params]))
print(f"Refit\t" + "\t".join([f"{p:.4}" for p in print_opt]))
print(f"Std-err\t" + "\t".join([f"{u:.3}" for u in uncerts]))

moments.Plotting.plot_2d_comp_multinom(
model_func(opt_params, data.sample_sizes), data)

60 , -1991.09 , array([3.32995 , 2.08331 , 0.184467 , 3.04554])

4.2. Optimization 29

moments, Release 1.1.0

80 , -1329.85 , array([1.5606 , 2.83455 , 0.237688 , 2.94619])

100 , -1252.15 , array([1.78864 , 2.51295 , 0.235066 , 2.54749])

120 , -1243.31 , array([1.85429 , 2.44477 , 0.214185 , 2.54415])

140 , -1205.95 , array([1.90496 , 3.03861 , 0.189469 , 2.16029])

160 , -1188.91 , array([2.09831 , 2.95263 , 0.201107 , 1.93286])

180 , -1188.21 , array([2.08727 , 3.03551 , 0.198968 , 1.96291])

200 , -1187.61 , array([2.0709 , 3.0153 , 0.197898 , 1.93797])

220 , -1187.6 , array([2.07395 , 3.01909 , 0.197498 , 1.9306])

240 , -1187.6 , array([2.07377 , 3.0196 , 0.197521 , 1.93134])

Params nu1 nu2 T_div m_sym theta
Input 2.0 3.0 0.2 2.0 10000
Refit 2.074 3.019 0.1975 1.931 9.929e+03
Std-err 0.0414 0.0689 0.0044 0.0738 69.7

30 Chapter 4. SFS Inference

moments, Release 1.1.0

Above, we can see that we recovered the parameters used to simulate the data very closely, and we used moments’s
plotting features to visually compare the data to the model fit.

4.3 References

4.3. References 31

moments, Release 1.1.0

32 Chapter 4. SFS Inference

CHAPTER

FIVE

MULTI-POPULATION LD STATISTICS

Using moment equations for the two-locus haplotype distribution, moments.LD lets us compute a large family of linkage
disequilibrium statistics in models with arbitrary mutation and recombination rates and flexible demographic history
with any number of populations. The statistics are stored in a different way that the SFS, but much of the API for
implementing demographic events and integration is largely consistent between the SFS and LD methods.

If you use moments.LD in your research, please cite:

• [Ragsdale2019]: Ragsdale, A. P. & Gravel, S. (2019). Models of archaic admixture and recent history from
two-locus statistics. PLoS Genetics, 15(6), e1008204.

• [Ragsdale2020]: Ragsdale, A. P. & Gravel, S. (2020). Unbiased estimation of linkage disequilibrium from
unphased data. Mol Biol Evol, 37(3), 923-932.

5.1 Linkage disequilibrium

The LD statistics that moments.LD computes are low-order summaries of expected LD between pairs of loci. In
particular, we compute E[𝐷2], the expectation of the numerator of the familiar 𝑟2 measure of LD. From this system of
equations, we also compute E[𝐷𝑧] = E[𝐷(1 − 2𝑝)(1 − 2𝑞)], where 𝑝 and 𝑞 are the allele frequencies at the left and
right loci, respectively; and we also compute 𝜋2 = E[𝑝(1− 𝑝)𝑞(1− 𝑞)], a measure of the “joint heterozygosity” of the
two loci [Hill1968].

These statistics are stored in a list of arrays, where each list element corresponds to a given recombination rate, 𝜌 =
4𝑁𝑒𝑟, where r is the recombination probability separating loci. The length of the list is the length of the number of
recombination rates given, plus one, as the last entry stores the single-locus expected heterozygosity:

import moments, moments.LD
theta = 0.001 # the mutation rate 4*Ne*u
rho = [0, 1, 10] # recombination rates 4*Ne*r between loci
y = moments.LD.Demographics1D.snm(rho=rho, theta=theta) # steady-state expectations
y

LDstats([[1.38888889e-07 1.11111111e-07 3.05555556e-07]
[8.59375000e-08 6.25000000e-08 2.81250000e-07]
[2.01612903e-08 8.06451613e-09 2.54032258e-07]], [0.001], num_pops=1, pop_ids=None)

Here, we can see the decay of LD with increasing recombination rate, and also that the heterozygosity equals the scaled
mutation rate at steady-state, as expected. On any LD object, we can get the list of statistics present by calling:

y.names()

33

moments, Release 1.1.0

(['DD_0_0', 'Dz_0_0_0', 'pi2_0_0_0_0'], ['H_0_0'])

The underscores index the populations for that statistic, so DD_0_0 representsE[𝐷0𝐷0] = E[𝐷2
0], Dz_0_0_0 represents

E[𝐷0(1−2𝑝0)(1−2𝑞0)], and pi2_0_0_0_0 represents E[𝑝0(1−𝑝0)𝑞0(1−𝑞0)]. Here, there is only the one population
(indexed by zero), but it should be clear how the indexing extends to additional populations.

One of the great strengths of moments.LD is that while it only computes low-order moments of the full two-locus
haplotype distribution, it allows us to expand the basis of statistics to include many populations. For example, one of the
example demographic models for two populations is Demographics2D.split_mig, in which a single population splits
into two descendant populations, each with their own relative constant sizes and connected by symmetric migration.

y = moments.LD.Demographics2D.split_mig((0.5, 2.0, 0.2, 1.0), rho=1.0)
here, the parameters of split_mig are (T, nu0, nu1, m_sym)
print(y.names())
y

(['DD_0_0', 'DD_0_1', 'DD_1_1', 'Dz_0_0_0', 'Dz_0_0_1', 'Dz_0_1_1', 'Dz_1_0_0', 'Dz_1_0_1
→˓', 'Dz_1_1_1', 'pi2_0_0_0_0', 'pi2_0_0_0_1', 'pi2_0_0_1_1', 'pi2_0_1_0_1', 'pi2_0_1_1_1
→˓', 'pi2_1_1_1_1'], ['H_0_0', 'H_0_1', 'H_1_1'])

LDstats([[8.56693276e-08 5.27620533e-08 8.04349065e-08 7.02703408e-08
2.47530535e-08 5.40257063e-08 1.30712522e-07 4.83611466e-08
5.90156000e-08 2.29151341e-07 2.86561358e-07 2.68396037e-07
3.74454189e-07 3.53031720e-07 3.37988994e-07]], [0.00088909 0.00116239 0.00110805],␣

→˓num_pops=2, pop_ids=None)

Notice that already with just two populations we pick up many additional statistics: not just E[𝐷2
0] and E[𝐷2

1], but also
the cross population covariance of 𝐷: E[𝐷0𝐷1], as well as all possible combinations of 𝐷, 𝑝, and 𝑞 for the Dz and pi2
moments. This is what makes such LD computation an efficient and powerful approach for inference: it is very fast to
compute, it can be extended to many populations, and it gives us a large set informative statistics to compare to data
and run inference.

5.1.1 LD decay curves

We are most often interested in examining how LD depends on recombination distances separating pairs of loci, given
some underlying demography. Allele frequency correlations due to linkage are expected to break down faster with
larger recombination distances, so that statistics such as 𝐷2 decrease toward zero with increasing distances between
SNPs.

In the literature, we typically see the decay of 𝑟2 = E
[︁
𝐷2

𝜋2

]︁
or 𝜎2

𝑑 = E[𝐷2]
E[𝜋2]

reported. These are related quantities, but
there is a difference between the ratio of averages and the average of ratio. While solving for 𝑟2 is very difficult, our
moments framework immediately provides the expectations for 𝜎2

𝑑 and other statistics of the same form (such as what
we could call 𝜎𝐷𝑧 = E[𝐷𝑧]

E[𝜋2]
).

Here, we’ll use demes to define a few simple models (which we’ll illustrate with demesdraw), and explore how the
decay of 𝜎2

𝑑 and 𝜎𝐷𝑧 are affected by single-population demographic events. (Check out how to use Demes with mo-
ments.)

import demes, demesdraw
import matplotlib.pylab as plt

b1 = demes.Builder()
b1.add_deme(name="A", epochs=[dict(start_size=5000)])

(continues on next page)

34 Chapter 5. Multi-population LD statistics

moments, Release 1.1.0

(continued from previous page)

demog_constant = b1.resolve()

b2 = demes.Builder()
b2.add_deme(

name="A",
epochs=[

dict(start_size=5000, end_time=1000),
dict(start_size=1000, end_time=400),
dict(start_size=5000, end_time=0)

]
)
demog_bottleneck = b2.resolve()

b3 = demes.Builder()
b3.add_deme(

name="A",
epochs=[dict(start_size=5000, end_time=600), dict(end_size=10000, end_time=0)]

)
demog_growth = b3.resolve()

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4))
demesdraw.size_history(demog_constant, ax=ax1, invert_x=True)
demesdraw.size_history(demog_bottleneck, ax=ax2, invert_x=True)
demesdraw.size_history(demog_growth, ax=ax3, invert_x=True)
ax1.set_ylim(top=10000)
ax2.set_ylim(top=10000)
ax3.set_ylim(top=10000)
ax1.set_title("Constant size")
ax2.set_title("Bottleck and recovery")
ax3.set_title("Recent exponential growth");
fig.tight_layout()

For each of these models, we’ll compute LD statistics over a range of recombination rates, and then plot the decay
curves.

import numpy as np

set up recombination rates
rhos = np.logspace(-2, 2, 21)

(continues on next page)

5.1. Linkage disequilibrium 35

moments, Release 1.1.0

(continued from previous page)

compute statistics and normalize to get sigma-d^2 and sigma-Dz
y_constant = moments.Demes.LD(demog_constant, sampled_demes=["A"], rho=rhos)
sigma_constant = moments.LD.Inference.sigmaD2(y_constant)

y_bottleneck = moments.Demes.LD(demog_bottleneck, sampled_demes=["A"], rho=rhos)
sigma_bottleneck = moments.LD.Inference.sigmaD2(y_bottleneck)

y_growth = moments.Demes.LD(demog_growth, sampled_demes=["A"], rho=rhos)
sigma_growth = moments.LD.Inference.sigmaD2(y_growth)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

ax1.plot(rhos, sigma_constant.LD()[:, 0], label="Constant")
ax1.plot(rhos, sigma_bottleneck.LD()[:, 0], label="Bottleneck")
ax1.plot(rhos, sigma_growth.LD()[:, 0], label="Exp. growth")

ax2.plot(rhos, sigma_constant.LD()[:, 1], label="Constant")
ax2.plot(rhos, sigma_bottleneck.LD()[:, 1], label="Bottleneck")
ax2.plot(rhos, sigma_growth.LD()[:, 1], label="Exp. growth")

ax1.set_yscale("log")
ax2.set_yscale("log")
ax1.set_xscale("log")
ax2.set_xscale("log")
ax1.set_xlabel(r"ρ")
ax2.set_xlabel(r"ρ")
ax1.set_ylabel(r"σ_d^2")
ax2.set_ylabel(r"σ_{Dz}")
ax1.legend()
ax2.legend()
fig.tight_layout()

36 Chapter 5. Multi-population LD statistics

moments, Release 1.1.0

5.1.2 Multiple populations

The statistic E[𝐷𝑖𝐷𝑗], where 𝑖 and 𝑗 index two populations, is the covariance of LD between those populations. If
these two population split from a common ancestral population, just after their split the covariance is equal to E[𝐷2] in
the ancestral population. It then decays over time, to zero if there is no migration between them and to some positive
value when they are connected by ongoing migration.

Here, we consider a simple split with isolation model and compute that covariance at different times in their history.

b = demes.Builder()
b.add_deme(name="ancestral", epochs=[dict(start_size=2000, end_time=1000)])
b.add_deme(

name="deme1",
ancestors=["ancestral"],
epochs=[dict(start_size=1500, end_size=1000)]

)
b.add_deme(

name="deme2",
ancestors=["ancestral"],
epochs=[dict(start_size=500, end_size=3000)]

)
g = b.resolve()

get LD stats between deme1 and deme2 and times in the past, using ancient samples
ts = np.linspace(999, 1, 11, dtype="int")
rhos = [0, 1, 2]
def get_covD(g, ts, rhos):

covD = {rho: [] for rho in rhos}
for t in ts:

y = moments.Demes.LD(
g,
sampled_demes=["deme1", "deme2"],
sample_times=[t, t],
rho=rhos

)
for rho in rhos:

covD[rho].append(
moments.LD.Inference.sigmaD2(y)[rhos.index(rho)][y.names()[0].index("DD_

→˓0_1")]
)

return covD

covD = get_covD(g, ts, rhos)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

demesdraw.tubes(g, ax=ax1)

for rho in rhos:
ax2.plot(ts, covD[rho], label=rf"$\rho={rho}$")

ax2.invert_xaxis()
ax2.set_xlabel("Time ago (gens)")
ax2.set_ylabel(r"$\sigma_{D_{1, 2}}$")

(continues on next page)

5.1. Linkage disequilibrium 37

moments, Release 1.1.0

(continued from previous page)

ax2.legend();

We can see that without migration, covariance of LD across populations is expected to decay over time. If instead the
two populations are connected by ongoing migration, LD will continue to have positive covariance, even long after
their split from the ancestral population.

b.add_migration(demes=["deme1", "deme2"], rate=2e-3)
g = b.resolve()

covD = get_covD(g, ts, rhos)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 4))

demesdraw.tubes(g, ax=ax1)

for rho in rhos:
ax2.plot(ts, covD[rho], label=rf"$\rho={rho}$")

ax2.invert_xaxis()
ax2.set_xlabel("Time ago (gens)")
ax2.set_ylabel(r"$\sigma_{D_{1, 2}}$")
ax2.legend();

38 Chapter 5. Multi-population LD statistics

moments, Release 1.1.0

5.1.3 Archaic admixture

Finally, as shown in [Ragsdale2019], the 𝜎𝐷𝑧 statistic is particularly sensitive to archaic admixture. Unlike E[𝐷2], it is
strongly elevated above single-ancestry expectations even with relatively small proportions of admixture from a deeply
diverged source. Here, we have a very simple model of population that branches off from the focal population in the
deep past and then provides 2% ancestry through admixture much more recently.

def admixture_model(t_pulse, prop=0.02):
b = demes.Builder()
b.add_deme(name="A", epochs=[dict(start_size=10000)])
b.add_deme(

name="B",
ancestors=["A"],
start_time=20000,
epochs=[dict(start_size=2000, end_time=t_pulse)]

)
b.add_pulse(sources=["B"], dest="A", proportions=[prop], time=t_pulse)
return b.resolve()

rhos = np.logspace(-2, 2, 21)

fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4))

demesdraw.tubes(admixture_model(1000), ax=ax1)

without admixture
g = admixture_model(100, prop=0)
y = moments.Demes.LD(g, sampled_demes=["A"], rho=rhos)
sigma_d2 = moments.LD.Inference.sigmaD2(y)
ax2.plot(rhos, sigma_d2.LD()[:, 0], "k--", lw=2, label="No admixture")
ax3.plot(rhos, sigma_d2.LD()[:, 1], "k--", lw=2)

varying admixture time
for t in [1, 200, 500, 1000, 2000]:

(continues on next page)

5.1. Linkage disequilibrium 39

moments, Release 1.1.0

(continued from previous page)

g = admixture_model(t)
y = moments.Demes.LD(g, sampled_demes=["A"], rho=rhos)
sigma_d2 = moments.LD.Inference.sigmaD2(y)
ax2.plot(rhos, sigma_d2.LD()[:, 0], lw=1, label="$T_{pulse}=$"+f"${t}$")
ax3.plot(rhos, sigma_d2.LD()[:, 1], lw=1)

ax2.legend()
ax2.set_xscale("log")
ax2.set_yscale("log")
ax3.set_xscale("log")
ax3.set_yscale("log")
ax2.set_xlabel(r"ρ")
ax3.set_xlabel(r"ρ")
ax2.set_ylabel(r"σ_d^2")
ax3.set_ylabel(r"σ_{Dz}")
fig.tight_layout();

5.2 Demographic events

As seen above, we can use either demes or the API to compute LD statistics under some demography. While demes
is a very useful tool for building and visualizing demographic models, we sometimes want to use the built in functions
to apply demographic events and integrate the LD stats object directly. Mirroring the moments API for manipulating
SFS, we apply demographic events to LD objects using demographic functions that return a new LDstats object:

5.2.1 Extinction/marginalization

If a population goes extinct, or if we just want to stop tracking statistics involving that population, we can use y.
marginalize(idx) to remove a given population or set of populations from the LD stats. Here, idx can be either
an integer index or a list of integer indexes. y.marginalize() returns a new LD stats object with the specified
populations removed and the population IDs preserved for the remaining populations (if given in the input LD stats).

40 Chapter 5. Multi-population LD statistics

moments, Release 1.1.0

5.2.2 Population splits

To split one population, we use y.split(i, new_ids=["child1", "child2"]), where i is the integer index of
the population to split, and the optional argument new_ids lets us set the split population IDs. Note that if the input
LD stats do not have population IDs defined (i.e y.pop_ids == None), we cannot specify new IDs.

5.2.3 Admixture and mergers

Admixture and merge events take two populations and combine them with given fractions of ancestry from each. The
new admixed/merged population is placed at the end of the array of population indexes, and the only difference been
y.admix() and y.merge() is that the merge function then removes the parental populations (i.e. the parents are
marginalized after admixture).

For both functions, usage is y.admix(idx0, idx1, f, new_id="xxx"). We specify the indexes of the two parental
populations (idx0 and idx1) and the proportion f contributed by the first specified population idx0 (population idx1
contributes 1-f). We can also provide the ID of the admixed population using ``new_id:

y = moments.LD.Demographics2D.snm(pop_ids=["A", "B"])
print(y.pop_ids)
y = y.admix(0, 1, 0.2, new_id="C")
print(y.pop_ids)
y = y.merge(1, 2, 0.75, new_id="D")
print(y.pop_ids)

['A', 'B']
['A', 'B', 'C']
['A', 'D']

5.2.4 Pulse migration

Finally, we can apply discrete (or pulse) mass migration events with a given proportion from one population to another.
Here, we again specify 1) the index of the source population, 2) the index of the target/destination population, and 3)
the proportion of ancestry contributed:

y = y.pulse_migrate(1, 0, 0.1)
print(y.pop_ids) # population IDs are unchanged.

['A', 'D']

5.3 Integration

Integrating the LD stats also mirrors the SFS integration function, with some changes to keyword arguments. At a
minimum, we need to specify the relative sizes or size function nu and the integration time T. When simulating LD
stats for one or more recombination rates, we also pass rho as a single rate or a list of rates, as needed:

y.integrate(nu, T, rho=rho, theta=theta)

For multiple populations, we can also specify a migration matrix of size 𝑛× 𝑛, where 𝑛 is the number of populations
that the LD stats represents. Like the SFS integration, we can also specify any populations that are frozen by passing
a list of length 𝑛 with True for frozen populations and False for populations to integrate.

5.3. Integration 41

moments, Release 1.1.0

Unlike SFS integration, LD integration also lets us specify selfing rates within each population, where selfing is a
list of length 𝑛 that specifies the selfing rate within each deme, which must be between 0 and 1.

5.4 References

42 Chapter 5. Multi-population LD statistics

CHAPTER

SIX

PARSING LD STATISTICS

As described in the multi-population LD section, we are interested in 𝜎2
𝑑-type statistics, which is the ratio of expectations

of 𝐷2 and 𝜋2 = 𝑝(1 − 𝑝)𝑞(1 − 𝑞). Again, 𝑝 and 𝑞 are the allele frequencies at the left and right loci.

To estimate these statistics from data, we take the average of each LD statistic over all pairs of observed (biallelic) SNPs
at a given recombination distance, and then divide by the observed 𝜋2 in one of the populations (the “normalizing”
population). As described below, we also use a block bootstrapping approach to estimate variances and covariances of
observed statistics at each recombination distance, which is used in inference and computing confidence intervals.

6.1 Binned LD decay

To estimate LD decay curves from the data, we bin all pairs of observed SNPs by recombination distance. While we can
bin by physical distance (bps) separating SNPs, genetic maps are non-uniform and physical distance does not perfectly
correlate with genetic distance at small scales. If we have a recombination map available, it is preferable to compute
and compare statistics using that map.

Recombination rate bins are defined by bin edges, which is a list or array with length equal to the number of desired
bins plus one. Bin edges should be monotonically increasing, and are thus adjacent without gaps between bins. Thus,
bins are defined as semi-open intervals:

import moments.LD
import numpy as np

bin_edges = np.array([0, 1e-6, 1e-5, 1e-4])
print("Bins:")
for b_l, b_r in zip(bin_edges[:-1], bin_edges[1:]):

print(f"[{b_l}, {b_r})")

Bins:
[0.0, 1e-06)
[1e-06, 1e-05)
[1e-05, 0.0001)

There are a few considerations to keep in mind. In practice, very short distances can be problematic, because “non-
standard” evolutionary processes can distort allele frequency correlations for tightly linked loci. For example, our
evolutionary model does not include multi-nucleotide mutations [Harris2014] or gene conversion [Ardlie2001], both
of which operate at short distances.

Thus, when working with real data we recommend omitting bins of very short recombination distances. In practice,
we typically drop bins with length less than 𝑟 = 5× 10−6, which corresponds to roughly a few hundred bp on average
in humans.

43

moments, Release 1.1.0

6.2 Parsing from a VCF

The primary function of the Parsing module is computing LD statistics from an input VCF. There are a number
of options available, but the primary inputs are the path to the VCF file and the bins of distances separating loci.
Typically, we work in recombination distance, in which case a recombination map is also required. If we do not have
a recombination map available, we can bin by base pair distances instead.

The function moments.LD.Parsing.compute_ld_statistics returns a dictionary with the bins, returned statistics,
populations, and sums of each statistic over the provided bins. For example:

r_bins = np.logspace(-6, -3, 7)
ld_stats = moments.LD.Parsing.compute_ld_statistics(

vcf_path, r_bins=r_bins, rec_map_file=map_path)

6.2.1 Using a recombination map

The input recombination map is specified as a text file, with the first column giving positions along the chromosome
and additional column(s) defining the cumulative map(s), typically in units of cM. The header line is “Pos Map1 Map2
(etc)”, and we can use any map in the file by specifying the map_name. If no map name is given, or the specified map
name does not match a genetic map in the header, we use the map in the first column.

Typically, maps are given in units of centi-Morgans, and the default behavior is to assume cM units. If the map is given
in units of Morgans, we need to set cM=False.

6.2.2 Populations and pop-file

We often have data from more than one population, so we need to be able to specify which samples in the VCF corre-
spond to which populations. This is handled by passing a file that assigns each sample to a population. For example,
the population file is written as

sample pop
sid_0 pop_A
sid_1 pop_B
sid_2 pop_A
sid_3 pop_A
sid_4 pop_B
...

Then to include the population information in the function, we also pass a list of the populations to compute statistics
for. Samples from omitted populations are dropped from the data.

pops = ["pop_A", "pop_B"]
ld_stats = ld_stats = moments.LD.Parsing.compute_ld_statistics(

vcf_path,
r_bins=r_bins,
rec_map_file=map_path,
pop_file=pop_file_path,
pops=pops

)

44 Chapter 6. Parsing LD statistics

moments, Release 1.1.0

6.2.3 Masking and using bed files

If there are multiple chromosomes or contigs included in the VCF, we specify which chromosome to compute statistics
for by setting the chromosome flag. We can also subset a chromosome by including a bed file, which will filter out all
SNPs that fall outside the region intervals given in the bed file. Bed files have the format {chrom}\t{left_pos}\
t{right_pos}, which defines a semi-open interval. The path to the bed file is provided with the bed_file argument.

6.2.4 Computing a subset of statistics

Sometimes we may wish to only compute a subset of possible LD statistics. By default, the parsing function computes
all statistics possible for the number of populations provided. Instead, we can specify the stats_to_compute, which
is a list (of length 2) of lists. The first list are the LD statistics to return, and the second list has the heterozygosity
statistics to return. Statistic names follow the convention in moments.LD.Util.moment_names(num_pops), and
should be formatted accordingly.

6.2.5 Phased vs unphased data

We can compute LD statistics from either phased or unphased data. The default behavior is to assume that phas-
ing is unknown, and use_genotypes is True by default. If we want to compute LD using phased data, we set
use_genotypes=False, and parsing uses phased haplotypes instead. In general, phasing errors can bias LD statistics,
sometimes significantly, and using genotypes instead of haplotypes only slightly increases uncertainty in most cases.
Therefore, we usually recommend leaving use_genotypes=True.

6.3 Computing averages and covariances over regions

From moments.LD.Parsing.compute_ld_statistics(), we get LD statistic sums from the regions in a VCF,
perhaps constrained by a bed file. Our strategy is to divide our data into some large number of roughly equally sized
chunks, for example 500 regions across all 22 autosomes in human data. We then compute LD statistics independently
for each region (it helps to parallelize that step, using a compute cluster). From those outputs, we can then compute
average statistics genome-wide, as well as covariances of statistics within each bin. Those covariances are needed to
be able to compute likelihoods and run optimization.

The outputs of compute_ld_statistics are compiled in a dictionary, where the keys are unique region identifiers,
and items the outputs of that function. For example:

region_stats = {
0: moments.LD.Parsing.compute_ld_statistics(VCF, bed_file="region_0.bed", ...),
1: moments.LD.Parsing.compute_ld_statistics(VCF, bed_file="region_1.bed", ...),
2: moments.LD.Parsing.compute_ld_statistics(VCF, bed_file="region_2.bed", ...),
...

}

Mean and variance-covariance matrices are computed by calling bootstrap_data, passing the region statistics dic-
tionary, and optionally the index of the population to normalize 𝜎2

𝑑 statistics by. By default, the normalizing population
is the first (index 0).

mv = moments.LD.Parsing.bootstrap_data(region_stats)

mv contains the bins, statistics, and populations, as well as lists of mean statistics and variance-covariance matrices.
This data can then be directly compared to model expectations and used in inference.

6.3. Computing averages and covariances over regions 45

moments, Release 1.1.0

6.4 Example

Using msprime [Kelleher2016], we’ll simulate some data under an isolation-with-migration (IM) model and then com-
pute LD and heterozygosity statistics using the LD.Parsingmethods. First, the simulation will use the demes-msprime
interface, which are then written as a VCF.

The YAML-file specifying the model is

description: A simple isolation-with-migration model
time_units: generations
demes:
- name: anc
epochs: [{start_size: 10000, end_time: 1500}]

- name: deme0
ancestors: [anc]
epochs: [{start_size: 2000}]

- name: deme1
ancestors: [anc]
epochs: [{start_size: 20000}]

migrations:
- demes: [deme0, deme1]
rate: 1e-4

And we use msprime to simulate 1Mb of data, using a constant recombination and mutation rate.

import msprime
import demes
import os

set up simulation parameters
L = 1e6
u = r = 1.5e-8
n = 10

g = demes.load("data/im-parsing-example.yaml")
demog = msprime.Demography.from_demes(g)

trees = msprime.sim_ancestry(
{"deme0": n, "deme1": n},
demography=demog,
sequence_length=L,
recombination_rate=r,
random_seed=321,

)

trees = msprime.sim_mutations(trees, rate=u, random_seed=123)

with open("data/im-parsing-example.vcf", "w+") as fout:
trees.write_vcf(fout)

This simulation had 10 diploid individuals per population, and msprime/tskit writes their IDs as tsk_0, tsk_1, etc:

##fileformat=VCFv4.2
##source=tskit 0.3.5

(continues on next page)

46 Chapter 6. Parsing LD statistics

https://tskit.dev/msprime/docs/latest/intro.html

moments, Release 1.1.0

(continued from previous page)

##FILTER=<ID=PASS,Description="All filters passed">
##contig=<ID=1,length=1000000>
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">

→˓#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT tsk_
→˓0 tsk_1 tsk_2 tsk_3 tsk_4 tsk_5 tsk_
→˓6 tsk_7 tsk_8 tsk_9 tsk_10 tsk_11 tsk_
→˓12 tsk_13 tsk_14 tsk_15 tsk_16 tsk_17 tsk_
→˓18 tsk_19
1 221 . A T . PASS .
→˓ GT 1|1 1|0 1|1 1|1 0|1 0|1 0|0 1|1 0|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1 1|1
1 966 . A C . PASS .
→˓ GT 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|1 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|1 1|0
1 1082 . G A . PASS .
→˓ GT 0|0 0|1 0|0 0|0 1|0 1|0 1|1 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
1 1133 . G T . PASS .
→˓ GT 0|0 0|1 0|0 0|0 1|0 1|0 1|1 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0

To parse this data, we need the file that maps samples to populations and the recombination map file (the total map
length is found by 1 × 106 bp × 1.5 × 10−8 M/bp × 100 cM/M):

sample pop
tsk_0 deme0
tsk_1 deme0
tsk_2 deme0
tsk_3 deme0
tsk_4 deme0
tsk_5 deme0
tsk_6 deme0
tsk_7 deme0
tsk_8 deme0
tsk_9 deme0
tsk_10 deme1
tsk_11 deme1
tsk_12 deme1
tsk_13 deme1
tsk_14 deme1
tsk_15 deme1
tsk_16 deme1
tsk_17 deme1
tsk_18 deme1
tsk_19 deme1

Pos Map(cM)
0 0
1000000 1.5

With all this, we can now compute LD based on recombination distance bins:

r_bins = np.array(
[0, 1e-6, 2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3]

)
(continues on next page)

6.4. Example 47

moments, Release 1.1.0

(continued from previous page)

vcf_file = "data/im-parsing-example.vcf"
map_file = "data/im-parsing-example.map.txt"
pop_file = "data/im-parsing-example.samples.pops.txt"
pops = ["deme0", "deme1"]
ld_stats = moments.LD.Parsing.compute_ld_statistics(

vcf_file,
rec_map_file=map_file,
pop_file=pop_file,
pops=["deme0", "deme1"],
r_bins=r_bins,
report=False,

)

The output, ld_stats, is a dictionary with the keys bins, stats, pops, and sums. To get the average statistics over
multiple regions (here, we only have a single region that we simulated), we use means_from_region_data:

means = moments.LD.Parsing.means_from_region_data(
{0: ld_stats}, ld_stats["stats"], norm_idx=0

)

This provides 𝜎2
𝑑-type statistics relative to pi_2 in deme0, and relative heterozygosities (also relative to deme0). These

statistics were computed from only a single relatively small region, so they will be quite noisy. But we can still compare
to expectations under the input IM demographic model.

import demes
g = demes.load("data/im-parsing-example.yaml")

y = moments.Demes.LD(
g,
sampled_demes=["deme0", "deme1"],
rho=4 * g["anc"].epochs[0].start_size * r_bins,

)

stats are computed at the bin edges - average to get midpoint estimates
y = moments.LD.LDstats(

[(y_l + y_r) / 2 for y_l, y_r in zip(y[:-2], y[1:-1])] + [y[-1]],
num_pops=y.num_pops,
pop_ids=y.pop_ids,

)
y = moments.LD.Inference.sigmaD2(y)

plot LD decay curves for some statistics
moments.LD.Plotting.plot_ld_curves_comp(

y,
means[:-1],
[],
rs=r_bins,
stats_to_plot=[

["DD_0_0", "DD_0_1", "DD_1_1"],
["Dz_0_0_0", "Dz_0_1_1", "Dz_1_1_1"],
["pi2_0_0_1_1", "pi2_0_1_0_1", "pi2_1_1_1_1"]

(continues on next page)

48 Chapter 6. Parsing LD statistics

moments, Release 1.1.0

(continued from previous page)

],
labels=[[r"D_0^2", r"$D_0 D_1$", r"D_1^2"],

[r"$Dz_{0,0,0}$", r"$Dz_{0,1,1}$", r"$Dz_{1,1,1}$"],
[r"$\pi_{2;0,0,1,1}$", r"$\pi_{2;0,1,0,1}$", r"$\pi_{2;1,1,1,1}$"]

],
plot_vcs=False,
fig_size=(8, 3),
show=True,

)

6.4.1 Bootstrapping over multiple regions

Normally, we’ll want more data than from a single 1Mb region to compute averages and variances of statistics. Using the
same approach as the above example, ld_stats for 100 replicates we computed (see example in the moments reposi-
tory here). From this, each replicate set of statistics were placed in a dictionary, as rep_stats = {0: ld_stats_0,
1: ld_stats_1, ..., 99: ld_stats_99}. This dictionary can then be used to compute means and covariances
of statistics.

mv = moments.LD.Parsing.bootstrap_data(ld_stats)

By simulating more data, the LD decay curves are much less noisy, and by simulating multiple replicates, we also
compute the variance-covariance matrices for each bin and can include standard errors in the plots.

plot LD decay curves for some statistics
moments.LD.Plotting.plot_ld_curves_comp(

y,
mv["means"][:-1],
mv["varcovs"][:-1],
rs=r_bins,
stats_to_plot=[

["DD_0_0", "DD_0_1", "DD_1_1"],
["Dz_0_0_0", "Dz_0_1_1", "Dz_1_1_1"],
["pi2_0_0_1_1", "pi2_0_1_0_1", "pi2_1_1_1_1"]

],
labels=[[r"D_0^2", r"$D_0 D_1$", r"D_1^2"],

[r"$Dz_{0,0,0}$", r"$Dz_{0,1,1}$", r"$Dz_{1,1,1}$"],
(continues on next page)

6.4. Example 49

https://bitbucket.org/simongravel/moments/src/master/examples/LD/

moments, Release 1.1.0

(continued from previous page)

[r"$\pi_{2;0,0,1,1}$", r"$\pi_{2;0,1,0,1}$", r"$\pi_{2;1,1,1,1}$"]
],
plot_vcs=True,
fig_size=(8, 3),
show=True,

)

Note: The means-covariances data is required for inference using LD statistics. In Inferring demography with LD,
we’ll use the same mv data dictionary to refit the IM model as an example.

6.5 LD statistics in genotype blocks

moments.LD.Parsing also includes some functions for computing LD from genotype (or haplotype) blocks. Geno-
type blocks are arrays of shape 𝐿 × 𝑛, where L is the number of loci and n is the sample size. We assume a single
population, and so we compute 𝐷2, 𝐷𝑧, 𝜋2, and 𝐷, either pairwise or averaged over all pairwise comparisons.

If we have a genotype matrix containing n diploid samples, genotypes are coded as 0, 1, and 2, and we set
genotypes=True. If we have a haplotype matrix with data from n haploid copies, genotypes are coded as 0 and
1 only, and we set genotypes=False.

For example, given a single genotype matrix, we compute all pairwise statistics and average statistics as shown below:

L = 10
n = 5
G = np.random.randint(3, size=L * n).reshape(L, n)

all pairwise comparisons:
D2_pw, Dz_pw, pi2_pw, D_pw = moments.LD.Parsing.compute_pairwise_stats(G)

averages:
D2_ave, Dz_ave, pi2_ave, D_ave = moments.LD.Parsing.compute_average_stats(G)

Similarly, we can compute the pairwise or average statistics between two genotype matrices. The matrices can have
differing number of loci, but they must have the same number of samples, as the genotype matrices are assumed to
come from different regions within the same samples.

50 Chapter 6. Parsing LD statistics

moments, Release 1.1.0

L2 = 12
n = 5

G2 = np.random.randint(3, size=L2 * n).reshape(L2, n)

all pairwise comparisons:
D2_pw, Dz_pw, pi2_pw, D_pw = moments.LD.Parsing.compute_pairwise_stats_between(G, G2)

averages:
D2_ave, Dz_ave, pi2_ave, D_ave = moments.LD.Parsing.compute_average_stats_between(G, G2)

Note: Computing LD in genotype blocks uses C-extensions that are not built by default, so are only available if these
are built when compiling the C-extensions. In order to use these methods, we need to build these extensions using the
--ld_extensions flag, as python setup.py build_ext --ld_extensions -i.

6.6 References

6.6. References 51

moments, Release 1.1.0

52 Chapter 6. Parsing LD statistics

CHAPTER

SEVEN

INFERRING DEMOGRAPHY WITH LD

As described in the linkage disequilibrium and LD Parsing sections, we use a family of normalized LD and heterozy-
gosity statistics to compare between model expectations and data. We optimize demographic model parameters to find
the expected binned LD and heterozygosity statistics that maximize a composite likelihood over all pairs of SNPs and
recombination bins.

In this section, we’ll describe the likelihood framework, how to define demographic models that can be used in infer-
ence, how to run optimization using moments’ built-in inference functions, and how to compute confidence intervals.
We include a short example, following the parsing of data simulated under an isolation-with-migration model, to illus-
trate the main features and options.

7.1 Likelihood framework

For a given recombination distance bin indexed by 𝑖, we have a set of computed LD statistic means 𝐷𝑖 from data
along with the variance-covariance matrix Σ𝑖 as returned by moments.LD.Parsing.bootstrap_data. We assume
a multivariate Guassian likelihood function, so that a model parameterized by Θ that has expected statistics 𝜇𝑖(Θ) has
likelihood

ℒ𝑖(Θ|𝐷𝑖) = 𝑃 (𝐷𝑖|𝜇𝑖,Σ𝑖) =
exp

(︀
− 1

2 (𝐷𝑖 − 𝜇𝑖)
𝑇 Σ−1

𝑖 (𝐷𝑖 − 𝜇𝑖)
)︀

(2𝜋)𝑘/2|Σ𝑖|1/2
.

The likelihood is computed similarly for heterozygosity statistics, given their variance-covariance matrix. Then the
composite likelihood of two-locus data across recombination bins and single-locus heterozygosity (indexed by 𝑖 = 𝑛+1
where 𝑛 is the total number of recombination bins), is

ℒ =
𝑛+1∏︁
𝑖=1

ℒ𝑖.

In practice, we work with the log of the likelihood, so that products turn to sums and we can drop constant factors:

logℒ ∝ −1

2

𝑛+1∑︁
𝑖=1

(𝐷𝑖 − 𝜇𝑖)
𝑇 Σ−1

𝑖 (𝐷𝑖 − 𝜇𝑖).

As the data {𝐷𝑖,Σ𝑖} is fixed, we search for the model parameters Θ that provide {𝜇𝑖} that maximizes logℒ.

53

moments, Release 1.1.0

7.2 Defining demographic models

There are a handful of built-in demographic models for one-, two-, and three-population scenarios that can be used in
inference (see here). However, these are far from comprehensive and it is likely that custom demographic models will
need to be written for a given inference problem. For inspiration, moments.LD.Demographics1D, Demographics2D,
and Demographics3D can be used as starting points and as illustrations of how to structure model functions.

Demographic models all require a params positional argument and rho and (optionally) theta keyword arguments.
theta, the population-size scaled mutation rate, does not play a role in inference using relative statistics, as the mutation
rate cancels in 𝜎2

𝑑-type statistics.

For example, the IM model we simulated data under in the LD Parsing section could be parameterized as

def model_func(params, rho=None, theta=0.001):
nu0, nu1, T, M = params
y = moments.LD.Numerics.steady_state(rho=rho, theta=theta)
y = moments.LD.LDstats(y, num_pops=1)
y = y.split(0)
y.integrate([nu0, nu1], T, m=[[0, M], [M, 0]], rho=rho, theta=theta)
return y

In the input demographic model to the simulations, we had the ancestral effective population size as 10,000, the size
of deme0 was 2,000, and the size of deme1 was 20,000. The populations split 1,500 generations ago, and exchanged
migrants symmetrically at a rate of 0.0001 per-generation. Converted into genetic units, nu0 = 0.2, nu1 = 2, T=1500
/ 2 / 10000 = 0.075, and M = 2 * 10000 * 0.0001 = 2.0.

7.3 Running optimization

Optimization with moments.LD, much like moments optimization with the SFS, includes a handful functions that serve
as wrappers for scipy optimizers with options specific to working with LD statistics. The two primary functions in
moments.LD.Inference are

• optimize_log_fmin: Uses the downhill simplex algorithm on the log of the parameters.

• optimize_log_powell: Uses the modified Powell’s method, which optimizes slices of parameter space se-
quentially.

Each optimization method accepts the same arguments. Required positional arguments are

• p0: The initial guess for the parameters in model_func.

• data: Structured as a list of lists of data means and data var-cov matrices. I.e., data = [[means[0],
means[1], ...], [varcovs[0], varcovs[1], ...]], with the final entry of the lists the means and var-
covs of the heterozygosity statistics.

• model_func: The demographic model to be fit (see above section). Importantly, this is a list, where the first
entry is the LD model, which is always used, and the optional second entry is a demographic model for the SFS
(which is a rarely used option and can be ignored). So usually, we would set model_func as [model_func_ld].

Additionally, we will almost always pass the list of unscaled recombination bin edges as rs = [r0, r1, ..., rn],
which defines n recombination bins.

The effective population size plays a different role in LD inference than it does in SFS inference. For the site frequency
spectrum, 𝑁𝑒 merely acts as a linear scaling factor and is absorbed by the scaled mutation rate 𝜃, which is treated as a
free parameter. Here, 𝑁𝑒 instead rescales recombination rates, and because we use a recombination map to determine
the binning of data by recombination distances separating loci, 𝑁𝑒 is a parameter that must be either passed as a fixed
value or simultaneously fit in the optimization.

54 Chapter 7. Inferring demography with LD

moments, Release 1.1.0

If Ne is a fixed value, we specify the population size using that keyword argument. Otherwise, if Ne is to be fit, our
list of parameters to fit by convention includes Ne in the final position in the list. Typically, Ne is not a parameter of
the demographic model, as we work in rescaled genetic units, so the parameters that get passed to model_func are
params[:-1]. However, it is also possible to write a demographic model that also uses Ne as a parameter. In this case
we set pass_Ne to True, so that Ne both rescales recombination rates and is a model parameter, and all params are
passed to model_func.

• Ne: The effective population size, used to rescale rs to get rhos = 4 * Ne * rs.

• pass_Ne: Defaults to False. If True, the demographic model includes Ne as a parameter (in the final position
of input parameters).

Other commonly used options include

• fixed_params: Defaults to None. To fix some parameters, this should be a list of equal length as p0, with None
for parameters to be fit and fixed values at corresponding indexes.

• lower_bound: Defaults to None. Constraints on the lower bounds during optimization. These are given as lists
of the same length of the parameters.

• upper_bound: Defaults to None. Constraints on the upper bounds during optimization. These are given as lists
of the same length of the parameters.

• statistics: Defaults to None, which assumes that all statistics are present and in the conventional default
order. If the data is missing some statistics, we must specify which statistics are present using the subset of
statistic names given by moments.LD.Util.moment_names(num_pops).

• normalization: Defaults to 0. The index of the population to normalize by, which should match the population
index that we normalized by when parsing the data.

• verbose: If an integer greater than 0, prints updates of the optimization procedure at intervals given by that
spacing.

7.3.1 Example

Using the data simulated in the Parsing section, we can refit the demographic model under a parameterized IM model.
For this, we could use the moments.LD.Demographics2D.split_mig model as our model_func, which is equiva-
lent to the function we defined above (which we use in this example). After loading the data and setting up the inference
options, we’ll use optimize_log_fmin to fit the model.

import moments.LD
import pickle

data = pickle.load(open("data/means.varcovs.split_mig.100_reps.bp", "rb"))

rs = [0, 1e-6, 2e-6, 5e-6, 1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4, 1e-3]

p_guess = [0.1, 2.0, 0.075, 2.0, 10000]
p0 = moments.LD.Util.perturb_params(p_guess, fold=0.2)

run optimization
opt_params, LL = moments.LD.Inference.optimize_log_fmin(

p_guess,
[data["means"], data["varcovs"]],
[model_func],
rs=rs,
verbose=40,

(continues on next page)

7.3. Running optimization 55

moments, Release 1.1.0

(continued from previous page)

)

get physical units, rescaling by Ne
physical_units = moments.LD.Util.rescale_params(

opt_params, ["nu", "nu", "T", "m", "Ne"]
)

print("best fit parameters:")
print(f" N(deme0) : {physical_units[0]:.1f}")
print(f" N(deme1) : {physical_units[1]:.1f}")
print(f" Div. time (gen) : {physical_units[2]:.1f}")
print(f" Migration rate : {physical_units[3]:.6f}")
print(f" N(ancestral) : {physical_units[4]:.1f}")

40 , -214.296 , array([0.140269 , 1.95203 , 0.0514585 , 2.07543 , ␣
→˓12430])

80 , -130.758 , array([0.153478 , 2.00214 , 0.0541354 , 2.11845 , ␣
→˓11248.2])

120 , -77.1877 , array([0.184635 , 1.80666 , 0.0673507 , 2.0472 , ␣
→˓11068.5])

160 , -76.8557 , array([0.186388 , 1.80029 , 0.0685854 , 2.05002 , ␣
→˓11008.4])

200 , -76.823 , array([0.185232 , 1.80143 , 0.0679905 , 2.04797 , ␣
→˓11010.4])

240 , -76.8106 , array([0.185808 , 1.80374 , 0.0683159 , 2.05049 , ␣
→˓11000.2])

280 , -76.4522 , array([0.188075 , 1.81258 , 0.0692172 , 2.02497 , ␣
→˓10970.3])

320 , -74.2099 , array([0.183888 , 1.92246 , 0.0656908 , 1.82861 , ␣
→˓10918.1])

360 , -72.9169 , array([0.191533 , 2.01901 , 0.0680872 , 1.70206 , ␣
→˓10638.2])

400 , -72.7291 , array([0.192878 , 2.06349 , 0.0681534 , 1.66157 , ␣
→˓10576])

440 , -72.7222 , array([0.193385 , 2.06172 , 0.0684375 , 1.67061 , ␣
→˓10567.8])

best fit parameters:
N(deme0) : 2042.8

(continues on next page)

56 Chapter 7. Inferring demography with LD

moments, Release 1.1.0

(continued from previous page)

N(deme1) : 21785.4
Div. time (gen) : 1445.7
Migration rate : 0.000079
N(ancestral) : 10569.8

These should be pretty close to the input demographic parameters from the simulations! They won’t be spot on, as this
was only using 100Mb of simulated data, but we should be in the ballpark.

7.4 Computing confidence intervals

When running demographic inference, we get a point estimate for the best fit demographic parameters. However, for
an unknown underlying true value, it’s important to also estimate what’s called a confidence interval. The CI tells us
the probability that the true value lies within some range, and provides some information about which parameters in
our demographic model are tightly constrained and which parameters we have little power to pin down.

moments.LD can estimate confidence intervals using either the Fisher Information Matrix (FIM) or the Godambe
Information Matrix (GIM). In almost all cases when using real data (or even most simulated data), the FIM will estimate
a much smaller CI than the GIM. This occurs because the FIM assumes all data points that we’ve used are independent,
when in reality there is linkage that causes data points to be sometimes highly correlated between pairs of loci and
between recombination bins. The Godambe method uses bootstrap-resampled replicates of the data to account for this
correlation and does a much better job at estimating the true underlying CIs [Coffman2016].

Note: If you use the Godambe approach to estimate confidence intervals, please cite [Coffman2016]. Alec originally
implemented this approach in dadi, and moments has more-or-less used this same implementation here.

To create bootstrap replicates from the dictionary of data sums computed over regions, where rep_data = {0:
ld_stats_0, 1: ld_stats_1, ...}, e.g., we use

num_boots = 100
norm_idx = 0
bootstrap_sets = moments.LD.Parsing.get_bootstrap_sets(

rep_data, num_bootstraps=num_boots, normalization=norm_idx)

These bootstrap sets can then be used as the inputs to the moments.LD.Godambe methods. The two CI estimation
methods are

• FIM_uncert: Uses the Fisher Information Matrix. Usage is FIM_uncert(model_func, opt_params,
means, varcovs, r_edges=rs).

• GIM_uncert: Uses the Godambe Information Matrix. Usage is GIM_uncert(model_func,
bootstrap_sets, opt_params, means, varcovs, r_edges=rs).

In each case, the model function is the same as used in inference (some manipulation may be needed if we had any fixed
parameters), means and varcovs are the same data as input to the inference function, and r_edges are the bin edges
used in the inference. Additional options for some corner cases are described in the API reference for LD methods.

7.4. Computing confidence intervals 57

moments, Release 1.1.0

7.4.1 Example

We’ll use both the FIM and GIM to compute uncertainties from the above example inference.

Using the FIM approach:

using FIM
uncerts_FIM = moments.LD.Godambe.FIM_uncert(

model_func,
opt_params,
data["means"],
data["varcovs"],
r_edges=rs,

)

lower and upper CIs, in genetic units
lower = opt_params - 1.96 * uncerts_FIM
upper = opt_params + 1.96 * uncerts_FIM

convert to physical units
lower_pu = moments.LD.Util.rescale_params(lower, ["nu", "nu", "T", "m", "Ne"])
upper_pu = moments.LD.Util.rescale_params(upper, ["nu", "nu", "T", "m", "Ne"])

print("95% CIs:")
print(f" N(deme0) : {lower_pu[0]:.1f} - {upper_pu[0]:.1f}")
print(f" N(deme1) : {lower_pu[1]:.1f} - {upper_pu[1]:.1f}")
print(f" Div. time (gen) : {lower_pu[2]:.1f} - {upper_pu[2]:.1f}")
print(f" Migration rate : {lower_pu[3]:.6f} - {upper_pu[3]:.6f}")
print(f" N(ancestral) : {lower_pu[4]:.1f} - {upper_pu[4]:.1f}")

95% CIs:
N(deme0) : 1828.5 - 2267.9
N(deme1) : 18863.7 - 24873.3
Div. time (gen) : 1269.6 - 1631.3
Migration rate : 0.000069 - 0.000088
N(ancestral) : 10165.2 - 10974.3

And using the GIM approach:

bootstrap_sets = pickle.load(open("data/bootstrap_sets.split_mig.100_reps.bp", "rb"))

using GIM
uncerts_GIM = moments.LD.Godambe.GIM_uncert(

model_func,
bootstrap_sets,
opt_params,
data["means"],
data["varcovs"],
r_edges=rs,

)

lower and upper CIs, in genetic units
lower = opt_params - 1.96 * uncerts_GIM
upper = opt_params + 1.96 * uncerts_GIM

(continues on next page)

58 Chapter 7. Inferring demography with LD

moments, Release 1.1.0

(continued from previous page)

convert to physical units
lower_pu = moments.LD.Util.rescale_params(lower, ["nu", "nu", "T", "m", "Ne"])
upper_pu = moments.LD.Util.rescale_params(upper, ["nu", "nu", "T", "m", "Ne"])

print("95% CIs:")
print(f" N(deme0) : {lower_pu[0]:.1f} - {upper_pu[0]:.1f}")
print(f" N(deme1) : {lower_pu[1]:.1f} - {upper_pu[1]:.1f}")
print(f" Div. time (gen) : {lower_pu[2]:.1f} - {upper_pu[2]:.1f}")
print(f" Migration rate : {lower_pu[3]:.6f} - {upper_pu[3]:.6f}")
print(f" N(ancestral) : {lower_pu[4]:.1f} - {upper_pu[4]:.1f}")

95% CIs:
N(deme0) : 1581.2 - 2551.3
N(deme1) : 17105.0 - 26931.2
Div. time (gen) : 1030.5 - 1906.9
Migration rate : 0.000059 - 0.000096
N(ancestral) : 9854.5 - 11285.0

We can see above that the FIM uncertainties are considerably smaller (i.e. more constrained) than the GIM uncertain-
ties. However, the GIM uncertainties are to be preferred here, as they more accurately estimate the underlying true
uncertainty in the demographic inference.

7.5 References

7.5. References 59

moments, Release 1.1.0

60 Chapter 7. Inferring demography with LD

CHAPTER

EIGHT

SPECIFYING MODELS WITH DEMES

New in version 1.1, moments can compute the SFS and LD statistics directly from a demes-formatted demographic
model. To learn about how to describe a demographic model using demes, head to the demes repository or documen-
tation to learn about specifying multi-population demographic models using demes.

8.1 What is demes?

Demographic models specify the historical size changes, migrations, splits and mergers of related populations. Speci-
fying demographic models using moments or practically any other simulation engine can become very complicated and
error prone, especially when we want to model more than one population (e.g. [Ragsdale2020]). Even worse, every in-
dividual software has its own language and methods for specifying a demographic model, so a user has to reimplement
the same model across multiple software, which nobody enjoys. To resolve these issues of reproducibility, replication,
and susceptibility to errors, demes provides a human-readable specification of complex demography that is designed to
make it easier to implement and share models and to be able to use that demography with multiple simulation engines.

Demes models are written in YAML, and they are then automatically parsed to create an internal representation of the
demography that is readable by moments. moments can then iterate through the epochs and demographic events in that
model and compute the SFS or LD.

8.2 Simulating the SFS and LD using a demes model

Computing expectations for the SFS or LD using a demes model is designed to be as simple as possible. In fact, there
is no need for the user to specify any demographic events or integrate the SFS or LD objects. moments does all of that
for you.

It’s easiest to see the functionality through example. In the tests directory, there is a YAML description of the
[Gutenkunst2009] Out-of-African model:

description: The Gutenkunst et al. (2009) three-population model of human history.
doi:
- https://doi.org/10.1371/journal.pgen.1000695

time_units: years
generation_time: 25
demes:
- name: ancestral
description: Equilibrium/root population
epochs:
- end_time: 220e3
start_size: 7300

(continues on next page)

61

https://github.com/popsim-consortium/demes-python
https://popsim-consortium.github.io/demes-docs/main/index.html
https://popsim-consortium.github.io/demes-docs/main/index.html

moments, Release 1.1.0

(continued from previous page)

- name: AMH
description: Anatomically modern humans
ancestors: [ancestral]
epochs:
- end_time: 140e3
start_size: 12300

- name: OOA
description: Bottleneck out-of-Africa population
ancestors: [AMH]
epochs:
- end_time: 21.2e3
start_size: 2100

- name: YRI
description: Yoruba in Ibadan, Nigeria
ancestors: [AMH]
epochs:
- start_size: 12300
end_time: 0

- name: CEU
description: Utah Residents (CEPH) with Northern and Western European Ancestry
ancestors: [OOA]
epochs:
- start_size: 1000
end_size: 29725
end_time: 0

- name: CHB
description: Han Chinese in Beijing, China
ancestors: [OOA]
epochs:
- start_size: 510
end_size: 54090
end_time: 0

migrations:
- demes: [YRI, OOA]
rate: 25e-5

- demes: [YRI, CEU]
rate: 3e-5

- demes: [YRI, CHB]
rate: 1.9e-5

- demes: [CEU, CHB]
rate: 9.6e-5

This model describes all the populations (demes), their sizes and times of existence, their relationships to other demes
(ancestors and descendents), and migration between them. To simulate using this model, we just need to specify the
populations that we want to sample lineages from, the sample size in each population, and (optionally) the time of
sampling. If sampling times are not given we assume we sample at present time. Ancient samples can be specified by
setting sampling times greater than 0.

Let’s simulate 10 samples from each YRI, CEU, and CHB:

import moments
import numpy as np
ooa_model = "../tests/test_files/gutenkunst_ooa.yaml"

(continues on next page)

62 Chapter 8. Specifying models with demes

moments, Release 1.1.0

(continued from previous page)

we can visualize the model using demesdraw
import demes, demesdraw, matplotlib.pylab as plt
graph = demes.load(ooa_model)
demesdraw.tubes(graph, log_time=True, num_lines_per_migration=3);

Let’s simulate 10 samples from each YRI, CEU, and CHB:

sampled_demes = ["YRI", "CEU", "CHB"]
sample_sizes = [10, 10, 10]

fs = moments.Spectrum.from_demes(
ooa_model, sampled_demes=sampled_demes, sample_sizes=sample_sizes

)

print("populations:", fs.pop_ids)
print("sample sizes:", fs.sample_sizes)
print("FST:")
for k, v in fs.Fst(pairwise=True).items():

print(f" {k[0]}, {k[1]}: {v:.3f}")

populations: ['YRI', 'CEU', 'CHB']
sample sizes: [10 10 10]
FST:
YRI, CEU: 0.189
YRI, CHB: 0.205
CEU, CHB: 0.147

It’s that simple. We can also simulate data for a subset of the populations, while still accounting for migration with
other non-sampled populations:

8.2. Simulating the SFS and LD using a demes model 63

moments, Release 1.1.0

sampled_demes = ["YRI"]
sample_sizes = [40]

fs_yri = moments.Spectrum.from_demes(
ooa_model, sampled_demes=sampled_demes, sample_sizes=sample_sizes

)

print("populations:", fs_yri.pop_ids)
print("sample sizes:", fs_yri.sample_sizes)
print("Tajima's D =", f"{fs_yri.Tajima_D():.3}")

populations: ['YRI']
sample sizes: [40]
Tajima's D = -0.338

8.2.1 Ancient samples

Or sample a combination of ancient and modern samples from a population:

sampled_demes = ["CEU", "CEU"]
sample_sizes = [10, 10]
sample size of 10 from present and 10 from 20,000 years ago
sample_times = [0, 20000]

fs_ancient = moments.Spectrum.from_demes(
ooa_model,
sampled_demes=sampled_demes,
sample_sizes=sample_sizes,
sample_times=sample_times,

)

print("populations:", fs.pop_ids)
print("sample sizes:", fs.sample_sizes)
print("FST(current, ancient) =", f"{fs.Fst():.3}")

populations: ['CEU', 'CEU_sampled_20000_0']
sample sizes: [10 10]
FST(current, ancient) = 0.0912

Note the population IDs, which are appended with “_sampled_{at_time}” where “at_time” is the generation or year
(depending on the time unit of the model), as a float with an underscore replacing the decimal (here, 20000.0 years
ago).

64 Chapter 8. Specifying models with demes

moments, Release 1.1.0

8.2.2 Alternative samples specification

By specifying sampled demes, sample sizes, and sample times, we have a lot of flexibility over the sampling scheme.
Samples can more simply be specified as a dictionary, with one key per sampled population and values specifying
sample sizes. This dictionary is passed to the from_demes function using the samples keyword, and it cannot be used
in conjunction with sample times. As such, samples are taken at the end time (most recent time) of each population.

samples = {"YRI": 10, "CEU": 20, "CHB": 30, "OOA": 10}
fs = moments.Spectrum.from_demes(ooa_model, samples=samples)

Here, samples from YRI, CEU, and CHB are taken from time zero, and the OOA sample is taken from just before its
split into the CEU and CHB branches.

8.2.3 Linkage disequilibrium

We can similarly compute LD statistics. Here, we compute the set of multi-population Hill-Robertson statistics for the
three contemporary populations (YRI, CEU, and CHB), for three different recombination rates, 𝜌 = 4𝑁𝑟 = 0, 1, 2.

import moments.LD

sampled_demes = ["YRI", "CEU", "CHB"]
y = moments.LD.LDstats.from_demes(

ooa_model, sampled_demes=sampled_demes, rho=[0, 1, 2]
)

print("sampled populations:", y.pop_ids)

sampled populations: ['YRI', 'CEU', 'CHB']

8.2.4 Selection and dominance in Demes.SFS

Moments can compute the SFS under selection and dominance. The demes model format currently lets us specify a
single selection and dominance coefficient for each population in the model, or we can set different selection parameters
in each populations.

The most simple scenario is to specify a single selection and dominance parameter that applied to all populations in the
demographic model. In this case, we can pass gamma and/or h as scalar values to the function moments.Spectrum.
from_demes():

sampled_demes = ["YRI"]
sample_sizes = [40]
gamma = 10
h = 0.1

fs_yri_sel = moments.Spectrum.from_demes(
ooa_model,
sampled_demes=sampled_demes,
sample_sizes=sample_sizes,
gamma=gamma,
h=h

)

We can compare the neutral and selected spectra:

8.2. Simulating the SFS and LD using a demes model 65

moments, Release 1.1.0

compare to neutral SFS for YRI
fig = plt.figure()
ax = plt.subplot(111)
ax.semilogy(fs_yri, "-o", ms=6, lw=1, mfc="w", label="Neutral");
ax.semilogy(fs_yri_sel, "-o", ms=3, lw=1,

label=f"Selected, $\gamma={gamma}$, $h={h}$");
ax.set_ylabel("Density");
ax.set_xlabel("Derived allele count");
ax.legend();

We can gain more fine-grained control over variable selection and dominance in different populations by specifying
gamma and h as dictionaries mapping population names to the coefficients. There can be as many different coefficient
values as there are different demes in the demographic model. However, if a population is missing from the dictionary,
it is assigned the default selection or dominance coefficient. In most cases the default values are 𝛾 = 0 and ℎ = 1/2,
but these can be changed by specifying a _default value in the selection and dominance dictionaries.

For example:

g = demes.load("data/im-parsing-example.yaml")
print(g)

gamma = {"anc": -10, "deme0": -10, "deme1": 5}
h = {"anc": 0.3, "deme0": 0.3, "deme1": 0.7}

fs = moments.Spectrum.from_demes(
g,

(continues on next page)

66 Chapter 8. Specifying models with demes

moments, Release 1.1.0

(continued from previous page)

sampled_demes=["deme0", "deme1"],
sample_sizes=[20, 20],
gamma=gamma,
h=h

)

moments.Plotting.plot_single_2d_sfs(fs)

description: A simple isolation-with-migration model
time_units: generations
generation_time: 1
demes:
- name: anc
epochs:
- {end_time: 1500, start_size: 10000}

- name: deme0
ancestors: [anc]
epochs:
- {end_time: 0, start_size: 2000}

- name: deme1
ancestors: [anc]
epochs:
- {end_time: 0, start_size: 20000}

migrations:
- demes: [deme0, deme1]
rate: 0.0001

8.2. Simulating the SFS and LD using a demes model 67

moments, Release 1.1.0

In the case that a demographic model has many populations but only a small subset have differing selection or domi-
nance strengths, we can assign a default value different from 𝑠 = 0 or ℎ = 1/2. This is done by including a _default
key in the dictionary (note the leading underscore, to minimize the chance that the default key conflicts with a named
population in the demographic model). Taking the example above:

gamma = {"_default": -10, "deme1": 5}
h = {"_default": 0.3, "deme1": 0.7}

fs_defaults = moments.Spectrum.from_demes(
g,
sampled_demes=["deme0", "deme1"],
sample_sizes=[20, 20],
gamma=gamma,
h=h

)

assert np.allclose(fs, fs_defaults)

68 Chapter 8. Specifying models with demes

moments, Release 1.1.0

8.3 Using Demes to infer demography

Above, we showed how to use moments and demes-based demographic models to compute expectations for static
demographic models. That is, given a fixed demography we can compute expectations for the SFS or LD. We often
want to optimize the parameters of a given demographic model to fit observations from data. The general idea is that we
specify a parameterized model, compute the expected SFS under that model and its likelihood given the data, and then
update the model parameters to improve the fit. Moments uses scipy’s optimization functions to perform optimization.

To run the inference, we need three items: 1) the data (SFS) to be fit, 2) a parameterized demographic model, and 3)
a way to tell the optimization function which parameters to fit and any constraints on those parameters. We’ll assume
you already have a data SFS with stored pop_ids. For example, the data could be a 3-dimensional SFS for the three
sampled populations in the Out-of-Africa demographic model above, so that data.pop_ids = ["YRI", "CEU",
"CHB"].

The second item is the demes-formatted demographic model, such as the model written above. In this model, the
parameter values are the demographic event times, population sizes, and migration rates, and the YAML file specifies
all fixed parameters and initial guesses for the parameters to be fit.

The third item is a separate YAML-formatted file that tells the optimization function the variable parameters that should
be fit and any bounds and/or inequality constraints on the parameter values.

8.3.1 The options file

All parameters to be fit must be included under parameters in the option file. Any parameter that is not included
here is assumed to be a fixed parameter, and it will remain the value given in the Demes graph. moments will read this
YAML file into a dictionary using a YAML parser, so it needs to be valid and properly formatted YAML code.

The only required field in the “options” YAML is parameters. For each parameter to be fit, we must name that
parameter, which can be any unique string, and we need to specify which values in the Demes graph correspond to that
value (optionally, we can include a parameter description for our own sake). For example, to fit the bottleneck size in
the Out-of-Africa model, our options file would look like:

parameters:
- name: N_B
description: Bottleneck size for Eurasian populations
values:
- demes:

OOA:
epochs:
0: start_size

lower_bound: 100
upper_bound: 100000

This specifies that the start size of the first (and only) epoch of the OOA deme in the Demes graph should be fit. We
have also specified that the fit for this parameter should be bounded between 100 and 100,000.

The same parameter can affect multiple values in the Demes graph. For example, the size of the African population in
the Out-of-Africa model is applied to both the AMH and the YRI demes. This simply requires adding additional keys
in the values entry:

parameters:
- name: N_A
description: Expansion size
values:
- demes:

(continues on next page)

8.3. Using Demes to infer demography 69

https://docs.scipy.org/doc/scipy/reference/optimize.html

moments, Release 1.1.0

(continued from previous page)

AMH:
epochs:
0: start_size

YRI:
epochs:
0: start_size

lower_bound: 100
upper_bound: 100000

Migration rates can be specified to be fit as well. Note that the index of the migration is given, pointing to the migrations
in the order they are specified in the demes file.

parameters:
- name: m_Af_Eu
description: Symmetric migration rate between Afr and Eur populations
upper_bound: 1e-3
values:
- migrations:

1: rate

Note here that we have specified the upper bound to be 1e-3 (the units of the migration rate are parental migrant
probabilities, typical in population genetics models). For any parameter, we can set the lower bound and upper bound
as shown here. If they are not given, the lower bound defaults to 0 and the upper bound defaults to infinity.

Finally, we can also specify constraints on parameters. For example, if some event necessarily occurs before another,
we should add that relationship to the list of constraints.

parameters:
- name: TA
description: Time before present of ancestral expansion
values:
- demes:

ancestral:
epochs:
0: end_time

- name: TB
description: Time of YRI-OOA split
values:
- demes:

AMH:
epochs:
0: end_time

- name: TF
description: Time of CEU-CHB split
values:
- demes:

OOA:
epochs:
0: end_time

constraints:
- params: [TA, TB]
constraint: greater_than

- params: [TB, TF]
(continues on next page)

70 Chapter 8. Specifying models with demes

moments, Release 1.1.0

(continued from previous page)

constraint: greater_than

This specifies each of the event timings in the OOA model to be fit, and the constraints say that TA must be greater than
TB, and TB must be greater than TF.

8.3.2 The inference function

To run optimization using the Demes modeul, we call moments.Demes.Inference.optimize. The first three re-
quired inputs to optimize are the Demes input graph, the parameter options, and the data, in that order.

Additional options can be passed to the optimization function using keyword arguments in the moments.Demes.
Inference.optimize function. These include:

• maxiter: Maximum number of iterations to run optimization. Defaults to 1,000.

• perturb: Defaults to 0 (no perturbation of initial parameters). If greater than zero, it perturbs the initial param-
eters by up to perturb-fold. So if perturb is 1, initial parameters are randomly chosen from [1/2×𝑝0, 2×𝑝0].
Larger values result in stronger perturbation of initial guesses.

• verbose: Defaults to 0. If greater than zero, it prints an update to the specified output_stream (which defaults
to sys.stdout) every verbose iterations.

• uL: Defaults to None. If given, this is the product of the per-base mutation rate and the length of the callable
genome used to compile the data SFS. If we don’t give this scaled mutation rate, we optimize with theta as a free
parameter. Otherwise, we optimize with theta given by 𝜃 = 4 ×𝑁𝑒 × 𝑢𝐿, and 𝑁𝑒 is taken to be the size of the
root/ancestral deme (for which the size can be a either be a fixed parameter or a parameter to be fit!).

• log: Defaults to True. If True, optimize the log of the parameters.

• method: The optimization method to use, currently with the options “fmin” (Nelder-Mead), “powell”, or
“lbfgsb”. Defaults to “fmin”.

• fit_ancestral_misid: Defaults to False, and cannot be used with a folded SFS. For an unfolded SFS, the
ancestral state may be misidentified, resulting in a distortion of the SFS. We can account for that distortion by
fitting a parameter that accounts for some fraction of mis-labeled ancestral states.

• misid_guess: Used with fit_ancestral_misid, as the initial ancestral misidentification parameter guess.
Defaults to 0.02.

• output_stream: Defaults to sys.stdout.

• output: Defaults to None, in which case the result is printed to the output_stream. If given, write the opti-
mized Demes graph in YAML format to the given path/filename.

• overwrite: Defaults to False. If True, we overwrite any file with the path/filename given by output.

8.4 Single-population inference example

To demonstrate, we’ll fit a simple single-population demographic model to the synonymous variant SFS in the Mende
(MSL) from the Thousand Genomes data. The data for this population is stored in the docs/data directory. We previous
parsed all coding variation and used a mutation model to estimate 𝑢× 𝐿.

We can either fold the frequency spectrum, which is useful when we do not know the ancestral states of mutations.
Alternatively, we can fit with the unfolded spectrum, and if we suspect that some proportion of SNPs have their ancestral
state misidentified, we can additionally fit a parameter that corrects for this uncertainty. We’ll take the second approach
here, and fit the unfolded spectrum.

8.4. Single-population inference example 71

moments, Release 1.1.0

import moments
import pickle

all_data = pickle.load(open("./data/msl_data.bp", "rb"))
data = all_data["spectra"]["syn"]
data.pop_ids = ["MSL"]
uL = all_data["rates"]["syn"]
print("scaled mutation rate (u_syn * L):", uL)

project down to a smaller sample size, for illustration purposes
data = data.project([30])

scaled mutation rate (u_syn * L): 0.14419746897690008

We’ll fit a demographic model that includes an ancient expansion and a more recent exponential growth. This initial
model is stored in the docs/data directory as well.

The YAML specification of this model is

description: A single-population model to be fit to the MSL data. Initial guesses
are given as parameters in the model.

time_units: years
generation_time: 29
demes:
- name: MSL
epochs:
- end_time: 350000
start_size: 10000

- end_time: 20000
start_size: 25000

- end_time: 0
end_size: 60000

And we can specify that we want to fit the times of the size changes, and all population sizes. (Note that if we did not
have an estimate for the mutation rate, we would not fit the ancestral size.)

parameters:
- name: T1
description: Time before present of ancestral expansion
values:
- demes:

MSL:
epochs:
0: end_time

- name: T2
description: Time before present of start of exponential growth.
values:
- demes:

MSL:
epochs:
1: end_time

- name: Ne
description: Effective (ancestral/root) size

(continues on next page)

72 Chapter 8. Specifying models with demes

moments, Release 1.1.0

(continued from previous page)

values:
- demes:

MSL:
epochs:
0: start_size

- name: NA
description: Ancestral expansion size
values:
- demes:

MSL:
epochs:
1: start_size

- name: NF
description: Final population size
values:
- demes:

MSL:
epochs:
2: end_size

constraints:
- params: [T1, T2]
constraint: greater_than

deme_graph = "./data/msl_initial_model.yaml"
options = "./data/msl_options.yaml"

And now we can run the inference:

output = "./data/msl_best_fit_model.yaml"
ret = moments.Demes.Inference.optimize(

deme_graph,
options,
data,
uL=uL,
fit_ancestral_misid=True,
misid_guess=0.01,
method="lbfgsb",
output=output,
overwrite=True

)
param_names, opt_params, LL = ret
print("Log-likelihood:", -LL)
print("Best fit parameters")
for n, p in zip(param_names, opt_params):

print(f"{n}\t{p:.3}")

Log-likelihood: -126.08823318048917
Best fit parameters
T1 4.38e+05
T2 2.2e+04
Ne 1.09e+04
NA 2.5e+04

(continues on next page)

8.4. Single-population inference example 73

moments, Release 1.1.0

(continued from previous page)

NF 6.6e+04
p_misid 0.026

Printed above are the best fit parameters for this model, including the ancestral misidentification rate for synonymous
variants in the Mende sample. Parameters in this fit are scaled by our estimate of the total mutation rate of synonymous
variants (uL), which allows us to infer the ancestral 𝑁𝑒. Below, we plot the results and then compute confidence
intervals for this fit.

8.5 Plotting the results

We can see how well our best fit model fits the data, using moments plotting features:

fs = moments.Spectrum.from_demes(output, samples={"MSL": data.sample_sizes})
fs = moments.Misc.flip_ancestral_misid(fs, opt_params[-1])
moments.Plotting.plot_1d_comp_multinom(fs, data)

And we can illustrate the best fit model using demesdraw:

import demes, demesdraw
opt_model = demes.load(output)
demesdraw.size_history(opt_model, invert_x=True, log_time=True);

74 Chapter 8. Specifying models with demes

https://github.com/grahamgower/demesdraw

moments, Release 1.1.0

8.6 Computing confidence intervals

Using the output YAML from moments.Demes.Inference.optimize(), we compute confidence intervals using
moments.Demes.Inference.uncerts(). This function takes the output Demes graph from the optimization, the
same parameter options file, and the same data used in inference. These need to be consistent between the optimization
and uncertainty computation. If we specified the mutation rate or inferred an ancestral misidentification parameter,
those must also be provided.

The additional options to uncerts() are

• bootstraps: Defaults to None, in which case we use the FIM approach.

• uL: The scaled mutation rate, if used in the optimization. (See above for details.)

• log: Defaults to False. If True, we assume a log-normal distribution of parameters. Returned values are then
the standard deviations of the logs of the parameter values, which can be interpreted as relative parameter uncer-
tainties.

• eps: The relative step size to use when numerically computing derivatives to estimate the curvature of the
likelihood function at the inferred best-fit parameters.

• method: Defaults to “FIM”, which uses the Fisher information matrix. We can also use the Godambe informa-
tion matrix, which uses bootstrap replicates to account for non-independence between linked SNPs. This uses
methods developed by Alec Coffman in Ryan Gutenkunst’s group, described in [Coffman2016].

• fit_ancestral_misid: If the ancestral misid was fit, this should be set to True.

• misid_fit: The fit misidentification parameter, if it was fit.

• output_stream: Defaults to sys.stdout.

In our example using the Mende data above, we’ll use the FIM method compute confidence intervals:

8.6. Computing confidence intervals 75

moments, Release 1.1.0

std_err = moments.Demes.Inference.uncerts(
output,
options,
data,
uL=uL,
fit_ancestral_misid=True,
misid_fit=opt_params[-1],

)

print("95% CIs")
print("param\t\t2.5%\t\t97.5%")
for n, p, e in zip(param_names, opt_params, std_err):

print(f"{n}\t{p - 1.96 * e:-12g}\t{p + 1.96 * e:-13g}")

95% CIs
param 2.5% 97.5%
T1 378253 497820
T2 10528.9 33528.2
Ne 10387.3 11316.9
NA 23521.2 26539.5
NF 41670.7 90313.3
p_misid 0.0228469 0.0291068

To compute standard errors that account for non-independence between SNPs, we would use method="GIM" and
include a list of bootstrap replicate spectra that we pass to bootstraps.

8.7 Two-population inference and uncertainty example

Here, we’ll simulate a demographic model using msprime. In this example, we’ll simulate many regions of varying
length and mutation rates, from which we compute uL and estimate confidences using the GIM method, which requires
bootstrapped datasets of the SFS and associated scaled mutation rates.

First, we’ll simulate data under this two-population model:

g = demes.load("./data/two-deme-example.yaml")
print(g)

time_units: generations
generation_time: 1
demes:
- name: anc
epochs:
- {end_time: 2000, start_size: 8500}

- name: A
ancestors: [anc]
epochs:
- {end_time: 0, start_size: 700, end_size: 11000}

- name: B
ancestors: [anc]
epochs:
- {end_time: 0, start_size: 17500}

(continues on next page)

76 Chapter 8. Specifying models with demes

moments, Release 1.1.0

(continued from previous page)

migrations:
- demes: [A, B]
rate: 0.0015

import msprime

demog = msprime.Demography.from_demes(g)

num_regions = 200
Lengths between 75 and 125 kb
Ls = np.random.randint(75000, 125000, 200)
Mutation rates between 1e-8 and 2e-8
us = 1e-8 + 1e-8 * np.random.rand(200)

Total mutation rate
uL = np.sum(us * Ls)

Simulate and store allele frequency data (summed and by region)
ns = [20, 20]
region_data = {}
data = moments.Spectrum(np.zeros((ns[0] + 1, ns[1] + 1)))
data.pop_ids = ["A", "B"]
sample_sets are required to get the SFS from the tree sequences
sample_sets = (range(20), range(20, 40))

for i, (u, L) in enumerate(zip(us, Ls)):
ts = msprime.sim_ancestry(

{"A": ns[0] // 2, "B": ns[1] // 2},
demography=demog,
recombination_rate=1e-8,
sequence_length=L,

)
ts = msprime.sim_mutations(ts, rate=u)
SFS = ts.allele_frequency_spectrum(

sample_sets=sample_sets, span_normalise=False, polarised=True)
region_data[i] = {"uL": u * L, "SFS": SFS}
data += SFS

print("Simulated data. FST =", data.Fst())

Simulated data. FST = 0.03488586466502664

With this simulated data, we can now re-infer the model, using the following options:

parameters:
- name: T
description: Ancestral split time
values:
- demes:

anc:
epochs:

(continues on next page)

8.7. Two-population inference and uncertainty example 77

moments, Release 1.1.0

(continued from previous page)

0: end_time
- name: Ne
description: Ancestral effective population size
values:
- demes:

anc:
epochs:
0: start_size

- name: NA0
description: Initial population size of A
values:
- demes:

A:
epochs:
0: start_size

- name: NA
description: Final population size of A
values:
- demes:

A:
epochs:
0: end_size

- name: NB
description: B population size
values:
- demes:

B:
epochs:
0: start_size

- name: M
description: migration rate between A and B
values:
- migrations:

0: rate
upper_bound: 1

deme_graph = "./data/two-deme-example.yaml"
options = "./data/two-deme-example-options.yaml"
output = "./data/two-deme-example-best-fit.yaml"

ret = moments.Demes.Inference.optimize(
deme_graph,
options,
data,
uL=uL,
perturb=1,
output=output,
overwrite=True

)

Printing the results of this inference run:

78 Chapter 8. Specifying models with demes

moments, Release 1.1.0

param_names, opt_params, LL = ret
print("Log-likelihood:", -LL)
print("Best fit parameters")
for n, p in zip(param_names, opt_params):

print(f"{n}\t{p:.3}")

Log-likelihood: -1296.725088604149
Best fit parameters
T 1.52e+03
Ne 8.61e+03
NA0 5.74e+02
NA 2.05e+04
NB 1.46e+04
M 0.00115

To compute confidence intervals using the Godambe method, we need generate bootstrap replicates of the data (and
scaled mutation rate, if specified in the optimization).

bootstraps = []
bootstraps_uL = []
for _ in range(len(region_data)):

choices = np.random.choice(range(200), 200, replace=True)
bootstraps.append(

moments.Spectrum(sum([region_data[c]["SFS"] for c in choices])))
bootstraps_uL.append(sum([region_data[c]["uL"] for c in choices]))

Computing the uncertainties using GIM requires passing the bootstrapped data:

std_err = moments.Demes.Inference.uncerts(
output,
options,
data,
bootstraps=bootstraps,
uL=uL,
bootstraps_uL=bootstraps_uL,
method="GIM",

)

print("Standard errors:")
print("param\t\topt\t\tstderr")
for n, p, e in zip(param_names, opt_params, std_err):

print(f"{n}\t{p:-11g}\t{e:-14g}")

Standard errors:
param opt stderr
T 1515.2 183.786
Ne 8607.87 179.118
NA0 573.705 84.0684
NA 20466 5675.2
NB 14610.3 1994.22
M 0.00115135 0.000150782

8.7. Two-population inference and uncertainty example 79

moments, Release 1.1.0

8.8 References

80 Chapter 8. Specifying models with demes

CHAPTER

NINE

TWO-LOCUS FREQUENCY SPECTRUM

See Selection at two loci for introduction and examples to the Two-Locus extension.

9.1 API

The TLSpectrum class handles all manipulations of the two-locus frequency spectrum:

class moments.TwoLocus.TLSpectrum(data, mask=False, mask_infeasible=True, mask_fixed=False,
data_folded=None, check_folding=True, dtype=<class 'float'>,
copy=True, fill_value=nan, keep_mask=True, shrink=True)

Represents a two locus frequency spectrum.

Parameters

• data (array) – The frequency spectrum data, which has shape (n+1)-by-(n+1)-by-(n+1)
where n is the sample size.

• mask (array) – An optional array of the same size as data. ‘True’ entries in this array are
masked in the TLSpectrum.

• mask_infeasible (bool) – If True, mask all bins for frequencies that cannot occur, e.g. i
+ j > n. Defaults to True.

• mask_fixed (bool) – If True, mask the fixed bins. Defaults to True.

• data_folded (bool) – If True, it is assumed that the input data is folded for the major and
minor derived alleles

• check_folding (bool) – If True and data_folded=True, the data and mask will be checked
to ensure they are consistent.

D(proj=True, nA=None, nB=None)
Return the expectation of 𝐷 from the spectrum.

Parameters

• proj – If True, use the unbiased estimator from downsampling. If False, use naive maxi-
mum likelihood estimates for frequency.

• nA – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the left locus.

• nB – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the right locus.

81

moments, Release 1.1.0

D2(proj=True, nA=None, nB=None)
Return the expectation of 𝐷2 from the spectrum.

Parameters

• proj – If True, use the unbiased estimator from downsampling. If False, use naive maxi-
mum likelihood estimates for frequency.

• nA – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the left locus.

• nB – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the right locus.

Dz(proj=True, nA=None, nB=None)
Compute the expectation of 𝐷𝑧 = 𝐷(1 − 2𝑝)(1 − 2𝑞) from the spectrum.

Parameters

• proj – If True, use the unbiased estimator from downsampling. If False, use naive maxi-
mum likelihood estimates for frequency.

• nA – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the left locus.

• nB – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the right locus.

S(nA=None, nB=None)
Return the sum of probabilities over all variable two-locus entries in the spectrum.

ancestral_misid(p)
Return a new SFS with a given ancestral misidentification, p.

Parameters
p – The rate of ancestral state misidentification.

fold()

Fold the two-locus spectrum by minor allele frequencies.

static from_file(fid, mask_infeasible=True, return_comments=False)
Read frequency spectrum from file.

Parameters

• fid (str) – String with file name to read from or an open file object.

• mask_infeasible (bool) – If True, mask the infeasible entries in the two locus spectrum.

• return_comments (bool) – If true, the return value is (fs, comments), where comments
is a list of strings containing the comments from the file.

integrate(nu, tf, dt=0.01, rho=None, gamma=None, sel_params=None, sel_params_general=None,
theta=1.0, finite_genome=False, u=None, v=None, alternate_fg=None,
clustered_mutations=False)

Simulate the two-locus haplotype frequency spectrum forward in time. This integration scheme takes ad-
vantage of scipy’s sparse methods.

When using the reversible mutation model (with finite_genome = True), we are limited to selection at only
one locus (the left locus), and selection is additive. When using the default ISM, additive selection is
allowed at both loci, and we use sel_params, which specifies [sAB, sA, and sB] in that order. Note that
while this selection model is additive within loci, it allows for epistasis between loci if sAB != sA + sB.

82 Chapter 9. Two-locus frequency spectrum

moments, Release 1.1.0

Parameters

• nu – Population effective size as positive value or callable function.

• tf (float) – The integration time in genetics units.

• dt_fac (float) – The time step for integration.

• rho (float) – The population-size scaled recombination rate 4*Ne*r.

• gamma (float) – The population-size scaled selection coefficient 2*Ne*s.

• sel_params (list) – A list of selection parameters. See docstrings in Numerics. Selec-
tion parameters will be deprecated when we clean up the numerics and integration.

• sel_params_general (list) – To be filled. ## TODO!!

• theta (float) – Population size scale mutation parameter.

• finite_genome (bool) – Defaults to False, in which case we use the infinite sites model.
Otherwise, we use a reversible mutation model, and must specify u and v.

• u (float) – The mutation rate at the left locus in the finite genome model.

• v (float) – The mutation rate at the right locus in the finite genome model.

• alternate_fg (bool) – If True, use the alternative finite genome model. This parameter
will be deprecated when we clean up the numerics and integration.

left()

The marginal allele frequency spectrum at the left locus.

mask_fixed()

Mask all infeasible entries, as well as any where both sites are not segregating.

mask_infeasible()

Mask any infeasible entries.

pi2(proj=True, nA=None, nB=None)
Return the expectation of 𝜋2 = 𝑝(1 − 𝑝)𝑞(1 − 𝑞) from the spectrum.

Parameters

• proj – If True, use the unbiased estimator from downsampling. If False, use naive maxi-
mum likelihood estimates for frequency.

• nA – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the left locus.

• nB – If None, the average is computed over all frequencies. If given, condition on the given
allele count for the right locus.

project(ns, finite_genome=False, cache=True)
Project to smaller sample size.

param int ns: Sample size for new spectrum. param bool finite_genome: If we also track proportions in
fixed bins.

right()

The marginal AFS at the right locus.

to_file(fid, precision=16, comment_lines=[], foldmaskinfo=True)
Write frequency spectrum to file.

Parameters

9.1. API 83

moments, Release 1.1.0

• fid (str) – String with file name to write to or an open file object.

• precision (int) – Precision with which to write out entries of the SFS. (They are for-
mated via %.<p>g, where <p> is the precision.)

• comment_lines (list) – List of strings to be used as comment lines in the header of the
output file.

• foldmaskinfo (bool) – If False, folding and mask and population label information will
not be saved.

unfold()

Remove folding from the spectrum.

The Demographics module contains some standard demographic models. This is a good place to look for some
inspiration to create your own two-locus models as well.

moments.TwoLocus.Demographics.bottlegrowth(params, ns, rho=None, theta=1.0, gamma=None,
sel_params=None)

A bottleneck followed by exponential growth. The population changes size to nuB T generations ago, and then
has exponential size change to final size nuF. Time is in units of 2Ne generations, and sizes are relative to the
ancestral Ne.

Parameters

• params – Given as [nuB, nuF, T].

• ns – The sample size.

• rho – The population size scaled selection coefficient, 4*Ne*r.

• theta – The mutation rate at each locus, typically left as 1.

• gamma – Only used for additive selection at the A/a locus.

• sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so that
sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no epistasis.

moments.TwoLocus.Demographics.equilibrium(ns, rho=None, theta=1.0, gamma=None, sel_params=None,
sel_params_general=None, cache=False)

Compute or load the equilibrium two locus frequency spectrum. If the cached spectrum does not exist, create
the equilibrium spectrum and cache in the cache path.

Parameters

• ns – The sample size.

• rho – The population size scaled selection coefficient, 4*Ne*r.

• theta – The mutation rate at each locus, typically left as 1.

• gamma – Only used for additive selection at the A/a locus.

• sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so that
sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no epistasis.

• sel_params_general – General selection parameters for diploids. In the order (s_AB_AB,
s_AB_Ab, s_AB_aB, s_AB_ab, s_Ab_Ab, s_Ab_aB, s_Ab_ab, s_aB_aB, s_aB_ab)

• cache – If True, save the frequency spectrum in the cache for future use. If False, don’t save
the spectrum.

84 Chapter 9. Two-locus frequency spectrum

moments, Release 1.1.0

moments.TwoLocus.Demographics.growth(params, ns, rho=None, theta=1.0, gamma=None,
sel_params=None)

An expnential growth model, that begins growth at time T ago, in units of 2Ne generations. The final size is
given by nu, which is the relative size to the ancestral Ne.

Parameters

• params – Given as [nu, T].

• ns – The sample size.

• rho – The population size scaled selection coefficient, 4*Ne*r.

• theta – The mutation rate at each locus, typically left as 1.

• gamma – Only used for additive selection at the A/a locus.

• sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so that
sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no epistasis.

moments.TwoLocus.Demographics.set_cache_path(path='~/.moments/TwoLocus_cache')
Set directory in which demographic equilibrium phi spectra will be cached.

The collection of cached spectra can get large, so it may be helpful to store them outside the user’s home directory.

moments.TwoLocus.Demographics.three_epoch(params, ns, rho=None, theta=1.0, gamma=None,
sel_params=None)

A three-epoch model, with relative size changes nu1 that lasts for time T1, followed by a relative size change to
nu2 that last for time T2. Times are in units of 2Ne generations, and sizes are relative to the ancestral Ne.

Parameters

• params – Given as [nu1, nu2, T1, T2].

• ns – The sample size.

• rho – The population size scaled selection coefficient, 4*Ne*r.

• theta – The mutation rate at each locus, typically left as 1.

• gamma – Only used for additive selection at the A/a locus.

• sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so that
sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no epistasis.

moments.TwoLocus.Demographics.two_epoch(params, ns, rho=None, theta=1.0, gamma=None,
sel_params=None)

A two-epoch model, with relative size change nu, time T in the past. T is given in units of 2Ne generations. Note
that a relative size of 1 implies no size change.

Parameters

• params – Given as [nu, T].

• ns – The sample size.

• rho – The population size scaled selection coefficient, 4*Ne*r.

• theta – The mutation rate at each locus, typically left as 1.

• gamma – Only used for additive selection at the A/a locus.

• sel_params – Additive selection coefficients for haplotypes AB, Ab, and aB, so that
sel_params = [sAB, sA, sB]. If sAB = sA + sB, this is a model with no epistasis.

9.1. API 85

moments, Release 1.1.0

86 Chapter 9. Two-locus frequency spectrum

CHAPTER

TEN

TRIALLELE FREQUENCY SPECTRUM

10.1 API

class moments.Triallele.TriSpectrum(data, mask=False, finite_genome=False, mask_infeasible=True,
mask_fixed=True, data_folded_major=None,
check_folding_major=True, data_folded_ancestral=None,
check_folding_ancestral=True, dtype=<class 'float'>, copy=True,
fill_value=nan, keep_mask=True, shrink=True)

Represents a triallelic frequency spectrum.

The triallelic spectrum is represented as a square numpy masked array in which the (i, j)-th element stores the
count or density of loci in which there are i copies of the first derived allele and j copies of the second derived
allele.

Parameters

• data (array) – The frequency spectrum data of size (n+1)-by-(n+1) where n is the sample
size.

• mask (array) – An optional array of the same size as data. ‘True’ entries in this array are
masked in the TriSpectrum. These represent missing data categories, or invalid entries in
the array

• mask_infeasible (bool) – If True, mask all bins for frequencies that cannot occur, e.g. i
+ j > n. Defaults to True.

• mask_fixed (bool) – If True, mask the fixed bins. Defaults to True.

• data_folded_major (bool) – If True, it is assumed that the input data is folded for the
major and minor derived alleles.

• data_folded_ancestral (bool) – If True, it is assumed that the input data is folded to
account for uncertainty in the ancestral state. Note that if True, data_folded_major must also
be True.

• check_folding_major (bool) – If True and data_folded_ancestral=True, the data and
mask will be checked to ensure they are consistent.

• check_folding_ancestral (bool) – If True and data_folded_ancestral=True, the data
and mask will be checked to ensure they are consistent.

S()

Number of sites in the unmasked spectrum.

fold_ancestral()

Fold the spectrum based on the ancestral state

87

moments, Release 1.1.0

fold_major()

Fold the spectrum based on the major allele(s).

static from_file(fid, mask_infeasible=True, return_comments=False)
Read frequency spectrum from file.

See to_file method for details on the file format.

Parameters

• fid (str) – String with file name to read from or an open file object.

• mask_infeasible (bool) – If True, mask the infeasible entries in the triallelic spectrum.

• return_comments (bool) – If true, the return value is (fs, comments), where comments
is a list of strings containing the comments from the file.

integrate(nu, tf, dt=0.001, gammas=None, theta=1.0)
Method to simulate the triallelic fs forward in time. This integration scheme takes advantage of scipy’s
sparse methods.

Parameters

• nu – The population effective size as positive value or callable function.

• tf (float) – The integration time in genetics units.

• dt_fac (float) – time step for integration

• gammas (list) – Population size scaled selection coefficients [sAA, sA0, sBB, sB0, sAB].
Here, 0 represents that ancestral allele, so we can implement dominance by picking the
relationship between, e.g., sAA, sA0, sAB, and sA0.

• theta (float) – Population size scale mutation parameter, assuming equal mutation rates
to both derived alleles.

log()

Return the natural logarithm of the entries of the frequency spectrum.

Only necessary because numpy.ma.log now fails to propagate extra attributes after numpy 1.10.

mask_fixed()

Mask entries that are not triallelic.

mask_infeasible()

Mask any infeasible entries.

pi()

Estimated expected number of pairwise differences between two samples from the population at loci that
are triallelic

project(ns, finite_genome=False)
Project to smaller sample size.

Parameters
ns (int) – Sample size for new spectrum.

to_file(fid, precision=16, comment_lines=[], foldmaskinfo=True)
Write frequency spectrum to file.

The file format is:

• # Any number of comment lines beginning with a ‘#’

88 Chapter 10. Triallele frequency spectrum

moments, Release 1.1.0

• A single line containing the sample size. On the same line, the string ‘folded_major’ or
‘unfolded_major’ denoting the folding status of the array. And on the same line, the string
‘folded_ancestral’ or ‘unfolded_ancestral’ denoting the folding status of the array.

• A single line giving the array elements. The order of elements is e.g.: fs[0, 0] fs[0, 1] fs[0, 2] . . . fs[1,
0] fs[1, 1] . . .

• A single line giving the elements of the mask in the same order as the data line. ‘1’ indicates masked,
‘0’ indicates unmasked.

Parameters

• fid (str) – String with file name to write to or an open file object.

• precision (int) – Precision with which to write out entries of the SFS. (They are for-
mated via %.<p>g, where <p> is the precision.)

• comment_lines (list) – List of strings to be used as comment lines in the header of the
output file.

• foldmaskinfo (bool) – If False, folding and mask and population label information will
not be saved.

unfold()

Completely unfold the spectrum.

Returns a new TriSpectrum.

10.1. API 89

moments, Release 1.1.0

90 Chapter 10. Triallele frequency spectrum

CHAPTER

ELEVEN

DEMOGRAPHY AND GENETIC DIVERSITY

Todo: This module has not been completed.

Intro - intuition about how demography is expected to affect summary statistics helps in hypothesizing historical scenar-
ios to explain observed patterns of genetic diversity, or trouble-shooting poor fits of models to data. It’s also important
to understand how demographic parameters can be confounded and different evolutionary scenarios can give rise to
similar patterns of genetic diversity.

11.1 Measures of genetic diversity

Many of the common single-site diversity statistics we are familiar with in population genetics are summaries of the
SFS.

For single populations, diversity within a population is very often reported as the average heterozygosity (typically
denoted 𝜋 or 𝐻): the probability that two genome copies (i.e. samples) differ in state at a given locus. Suppose our
SFS stores the distribution of allele frequencies over 𝐿 loci for 𝑛 samples. Then the expected or average 𝜋 can be found
by summing across allele frequency bins in the SFS and computing the probability that two randomly drawn copies
carry different alleles for the given allele frequency:

E[𝜋] =
1

𝐿

𝑛−1∑︁
𝑖=1

2
𝑖(𝑛− 𝑖)

𝑛(𝑛− 1)
SFS(𝑖)

Under the standard neutral model with steady-state demography, diversity is expected to be equal to the scaled mutation
rate:

import moments

theta = 0.001 # the per-base scaled mutation rate, 4*Ne*u
n = 30 # the haploid sample size
fs = theta * moments.Demographics1D.snm([n])

print("Theta:", theta)
print("Diversity:", f"{fs.pi():0.4f}")

Theta: 0.001
Diversity: 0.0010

91

moments, Release 1.1.0

11.2 Single-population demography

Store values every x generations after instantaneouls double of size:

Ne = 1000

singletons = []
doubletons = []
tripletons = []
diversity = []

fs = moments.Demographics1D.snm([20])
singletons.append(fs[1])
doubletons.append(fs[2])
tripletons.append(fs[3])
diversity.append(fs.pi())

for gens in range(Ne):
fs.integrate([2], 4/2/Ne)
singletons.append(fs[1])
doubletons.append(fs[2])
tripletons.append(fs[3])
diversity.append(fs.pi())

import matplotlib.pylab as plt
fig = plt.figure(1)
ax = plt.subplot(1, 1, 1)
tt = [4 * t for t in range(Ne + 1)]
ax.plot(tt, singletons / singletons[0], label="Singletons")
ax.plot(tt, doubletons / doubletons[0], label="Doubletons")
ax.plot(tt, tripletons / tripletons[0], label="Tripletons")
ax.plot(tt, diversity / diversity[0], label="Diversity (pi)")
ax.set_xlabel("Generations after expansion")
ax.legend(frameon=False)

<matplotlib.legend.Legend at 0x7f3a8c9e9390>

92 Chapter 11. Demography and genetic diversity

moments, Release 1.1.0

• Tajima’s D and pi over time with size changes

• dynamics of allele frequency classes with size changes

11.3 Multiple populations

• Comparison to some classical result in an IM model?

• m-T confounding in heatmap of Fst

• Fst with small sizes vs large divergence

• pi over time in OOA model

11.3. Multiple populations 93

moments, Release 1.1.0

94 Chapter 11. Demography and genetic diversity

CHAPTER

TWELVE

DFE INFERENCE

By Aaron Ragsdale, November 2020.

The distribution of fitness effects (DFE) for new mutations describes is a fundamental parameter in evolutionary biology
- it determines the fixation probability of new functional mutations, the strength of background selection, and the genetic
architecture of traits and disease.

Very roughly, most new mutations across the genome are effectively neutral or deleterious, with a small fraction being
beneficial (e.g. [Keightley], [Boyko]). In coding regions, the average selection coefficient for a new mutation depends
on its functional effect: we typically assume synonymous (or silent) mutations are effectively neutral (though this may
be a tenuous assumption!), missense (or nonsynonymous) mutations are more deleterious on average, and loss-of-
function (or nonsense) mutations are often very damaging. We can learn about the DFE in each of these categories by
studying the distributions allele frequencies for variants in each class.

12.1 Data

Let’s first look at the data we’ll be working with. Here, I used single-population data from the Mende from Sierre
Leone (MSL) from the 1000 Genomes Project [1000G]. In Fig. 12.1, I plotted the unfolded SFS for three classes of
mutations in coding regions genome-wide. We can see that the missense variants are skewed to lower frequencies than
synonymous variants, on average, and loss-of-function (LOF) variants are skewed to even lower frequencies.

It can be difficult to judge the skew of the SFS based on SFS counts, since the total mutational target for each mutation
class differs (Table 12.1). In the bottom panel of the plot, we can see that of all LOF variants observed in the MSL
population, roughly 50% of them are singletons; compare that to synonymous variants, of which less than 30% are
singletons.

12.1.1 Mutation rates

The overall scaling of the SFS from mutation classes is also informative, because strongly deleterious or lethal mutations
are quickly lost from the population and so are often unseen. Thus, seeing fewer mutations that expected in a given
class tells us that some fraction of those mutations are highly deleterious. To make such an inference about the strongly
damaging tail fo the DFE we need to know the total mutation rates for each class of mutations.

Using the mutation model from [Karczewski], I summed across all possible mutations in genes genome-wide, their
mutational probability, and their functional consequences to get the total mutation rate (u*L - here, L is roughly 36 Mb
of annotated coding regions) for each of the three mutation classes shown in Fig. 12.1:

95

moments, Release 1.1.0

Fig. 12.1: Synonymous, missense, and loss-of-function SFS from the 1000 Genomes Project across all autosomal
genes. Top: counts in each frequency bin. Bottom: proportions in each frequency bin.

96 Chapter 12. DFE inference

moments, Release 1.1.0

Table 12.1: Total mutation rates for classes of mutations in coding re-
gions.

Mutation class Total mutation rate
Synonymous variants 0.1442
Missense variants 0.3426
Loss-of-function variants 0.0256

We can see here that the mutational target for nonsynonymous variants is about 2.37 times larger than for synonymous
variants. Still, we see far more segregating synonymous mutations than nonsynonymous mutations:

import moments
import pickle
import numpy as np

note that these frequency spectra are saved in the docs directory of the moments
repository: https://bitbucket.org/simongravel/moments/src/master/docs/data/
data = pickle.load(open("./data/msl_data.bp", "rb"))

fs_syn = data["spectra"]["syn"]
fs_mis = data["spectra"]["mis"]
fs_lof = data["spectra"]["lof"]

u_syn = data["rates"]["syn"]
u_mis = data["rates"]["mis"]
u_lof = data["rates"]["lof"]

print("Diversity:")
print(f"synonymous:\t{fs_syn.pi():.2f}")
print(f"missense:\t{fs_mis.pi():.2f}")
print(f"loss of func:\t{fs_lof.pi():.2f}")

print()
print("Diversity scaled by total mutation rate:")
print(f"synonymous:\t{fs_syn.pi() / u_syn:.2f}")
print(f"missense:\t{fs_mis.pi() / u_mis:.2f}")
print(f"loss of func:\t{fs_lof.pi() / u_lof:.2f}")

Diversity:
synonymous: 8452.01
missense: 6991.16
loss of func: 95.16

Diversity scaled by total mutation rate:
synonymous: 58614.15
missense: 20408.81
loss of func: 3718.19

12.1. Data 97

moments, Release 1.1.0

12.2 Controlling for demography

Demography (in this case, the population size history) affects mutation frequency trajectories and the SFS, so we need to
control for non-steady-state demography in some way. Using our assumption that synonymous variants are effectively
neutral, we first fit a demographic model to synonymous variants, and then with that inferred demography we fit the
DFE to selected variants.

We could pick any plausible demographic model to fit. The main consideration is to choose a demographic model
that can adequately fit the data, but is not so over-parameterized to be overfitting to the noise in the SFS. In Fig. 12.1,
we can also see the telltale sign of ancestral misidentification by the uptick of high-frequency variants. In addition
to the demographic parameters (sizes and epoch times), we wil also fit a parameter to account for the probability of
mis-polarizing a variant.

Let’s fit a model with three epochs: the ancestral size, an ancient expansion, and a recent exponential growth. In fitting
the demography, we keep multinom=True, the default, as we don’t have an estimate for 𝑁𝑒.

def model_func(params, ns):
nuA, nuF, TA, TF, p_misid = params
fs = moments.Demographics1D.snm(ns)
fs.integrate([nuA], TA)
nu_func = lambda t: [nuA * np.exp(np.log(nuF / nuA) * t / TF)]
fs.integrate(nu_func, TF)
fs = (1 - p_misid) * fs + p_misid * fs[::-1]
return fs

p_guess = [2.0, 10.0, 0.3, 0.01, 0.02]
lower_bound = [1e-3, 1e-3, 1e-3, 1e-3, 1e-3]
upper_bound = [10, 100, 1, 1, 0.999]

opt_params = moments.Inference.optimize_log_fmin(
p_guess, fs_syn, model_func,
lower_bound=lower_bound, upper_bound=upper_bound)

model = model_func(opt_params, fs_syn.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, fs_syn)
Ne = opt_theta / u_syn / 4

print("optimal demog. parameters:", opt_params[:-1])
print("anc misid:", opt_params[-1])
print("inferred Ne:", f"{Ne:.2f}")

optimal demog. parameters: [2.21531687 5.29769918 0.55450117 0.04088086]
anc misid: 0.01975812
inferred Ne: 11372.91
Log-likelihood: -689.7426549382283

Note that I initialized the model parameters fairly close to the optimal parameters. In practice, you would want to test
a wide range of initial conditions to make sure our inference didn’t get stuck at a local minimum.

We can see how well our model fit the synonymous data:

moments.Plotting.plot_1d_comp_multinom(model, fs_syn, residual="linear")

Demographic model fit to the MSL synonymous data. Top: model (red) and synonymous
(continues on next page)

98 Chapter 12. DFE inference

moments, Release 1.1.0

(continued from previous page)

data (blue) SFS. Bottom: residuals, plotted as ``(model - data) / sqrt(data)``.

That’s a pretty good fit! Now that we have our inferred demographic model, let’s move on to inferring the DFEs for
missense and LOF variants.

12.3 Inferring the DFE

Now that we have a plausible demographic model, we can move to the selected SFS. Not every new missense mutation
or every new LOF mutation will have the same fitness effect, so we aim to learn the distribution of selection coefficients
of new mutations. Here, we are going to assume an additive model of selection - that is, heterozygotes have fitness
1 + 𝑠 while homozygotes for the derived allele have fitness 1 + 2𝑠. We’re also only going to focus on the deleterious
DFE - we assume beneficial mutations are very rare, and we’ll ignore them.

The general strategy is to pick some distribution (here, we’ll choose a gamma distribution, though other distributions
such a log-normal or point masses could be used), and then infer the parameters of that distribution. To do so, we
compute a large number of SFS spanning the range of the distribution of possible 𝛾 = 2𝑁𝑒𝑠 values, and then combine
them based on weights given by the parameterized DFE (for example, [Ragsdale], [Kim]).

Because the underlying demographic model does not change, we can cache the SFS for each value of 𝛾. Then in
optimizing the DFE parameters, we just have a weighted sum across this cache, and this makes the actual DFE inference
very rapid.

12.3. Inferring the DFE 99

https://www.wikipedia.org/wiki/Gamma_distribution

moments, Release 1.1.0

12.3.1 Caching SFS

We cache the SFS for the inferred demography and a grid of selection coefficients ranging from neutral to strongly
deleterious. For the SFS with very deleterious selection coefficients, the computation is only stable with large sample
sizes. Thus, after each computation for a given selection coefficient, we check to make sure that the SFS does not
have large negative oscillations and did not fail to converge. If the computation failed, we doube the sample size and
recompute the SFS, repeating until we have a sample size large enough to stably compute the SFS. That SFS is then
projected to the needed sample size and chached.

def selection_spectrum(gamma, h=0.5):
rerun = True
ns_sim = 100
while rerun:

ns_sim = 2 * ns_sim
fs = moments.LinearSystem_1D.steady_state_1D(ns_sim, gamma=gamma, h=h)
fs = moments.Spectrum(fs)
fs.integrate([opt_params[0]], opt_params[2], gamma=gamma, h=h)
nu_func = lambda t: [opt_params[0] * np.exp(

np.log(opt_params[1] / opt_params[0]) * t / opt_params[3])]
fs.integrate(nu_func, opt_params[3], gamma=gamma, h=h)
if abs(np.max(fs)) > 10 or np.any(np.isnan(fs)):

large gamma-values can require large sample sizes for stability
rerun = True

else:
rerun = False

fs = fs.project(fs_syn.sample_sizes)
return fs

spectrum_cache = {}
spectrum_cache[0] = selection_spectrum(0)

gammas = np.logspace(-4, 3, 61)
for gamma in gammas:

spectrum_cache[gamma] = selection_spectrum(-gamma)

12.3.2 Optimization of the DFE

We’ll fit a gamma distribution for the DFE, which has parameters alpha and beta. First, we set up the expected thetas
for both missense and LOF mutations, as well as the function that weights the cached spectra based on the gamma
distribution. The parameters we fit are then alpha and beta (or shape and scale) of the gamma distribution and the
misidentification rate.

import scipy.stats
theta_mis = opt_theta * u_mis / u_syn
theta_lof = opt_theta * u_lof / u_syn

dxs = ((gammas - np.concatenate(([gammas[0]], gammas))[:-1]) / 2
+ (np.concatenate((gammas, [gammas[-1]]))[1:] - gammas) / 2)

def dfe_func(params, ns, theta=1):
alpha, beta, p_misid = params
fs = spectrum_cache[0] * scipy.stats.gamma.cdf(gammas[0], alpha, scale=beta)

(continues on next page)

100 Chapter 12. DFE inference

moments, Release 1.1.0

(continued from previous page)

weights = scipy.stats.gamma.pdf(gammas, alpha, scale=beta)
for gamma, dx, w in zip(gammas, dxs, weights):

fs += spectrum_cache[gamma] * dx * w
fs = theta * fs
return (1 - p_misid) * fs + p_misid * fs[::-1]

def model_func_missense(params, ns):
return dfe_func(params, ns, theta=theta_mis)

def model_func_lof(params, ns):
return dfe_func(params, ns, theta=theta_lof)

Fit missense variants:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_mis = moments.Inference.optimize_log_fmin(
p_guess, fs_mis, model_func_missense,
lower_bound=lower_bound, upper_bound=upper_bound,
multinom=False)

model_mis = model_func_missense(opt_params_mis, fs_mis.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_mis[0]:.4f}")
print("scale:", f"{opt_params_mis[1]:.1f}")
print("anc misid:", f"{opt_params_mis[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_mis, fs_mis))

optimal parameters:
shape: 0.1596
scale: 2332.3
anc misid: 0.0137
Log-likelihood: -695.1273435550006

To visualize the fit of our inferred model to the missense data:

moments.Plotting.plot_1d_comp_Poisson(model_mis, fs_mis, residual="linear")

Gamma-DFE fit to the MSL missense data.

12.3. Inferring the DFE 101

moments, Release 1.1.0

Next, we fit LOF variants in exactly the same way:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_lof = moments.Inference.optimize_log_fmin(
p_guess, fs_lof, model_func_lof,
lower_bound=lower_bound, upper_bound=upper_bound,
multinom=False)

model_lof = model_func_lof(opt_params_lof, fs_lof.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_lof[0]:.4f}")
print("scale:", f"{opt_params_lof[1]:.1f}")
print("anc misid:", f"{opt_params_lof[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_lof, fs_lof))

optimal parameters:
shape: 0.3589
scale: 7830.5
anc misid: 0.0021
Log-likelihood: -232.59479649815248

optimal parameters:
shape: 0.3589

(continues on next page)

102 Chapter 12. DFE inference

moments, Release 1.1.0

(continued from previous page)

scale: 7830.5
anc misid: 0.0021
Log-likelihood: -232.5947964992979

And again we visualize the fit of our inferred model to the LOF data:

moments.Plotting.plot_1d_comp_Poisson(model_lof, fs_lof, residual="linear")

Gamma-DFE fit to the MSL loss-of-function data.

Using the inferred 𝑁𝑒 from fitting the demographic model to the synonymous data and the function scipy.stats.
gamma.cdf(), we can compute the proportions of new missense and LOF mutations across bins of selection coeffi-
cients:

Table 12.2: The DFE for missense and loss-of-function variants binned by
selection coefficients, ranging from neutral or nearly neutral (|𝑠| < 10−5)
to strongly deleterious and lethal (|𝑠| ≥ 10−2).

Class |𝑠| < 10−5 10−5 ≤ |𝑠| < 10−4 10−4 ≤ |𝑠| < 10−3 10−3 ≤ |𝑠| < 10−2 |𝑠| ≥ 10−2

Missense 0.246 0.109 0.157 0.219 0.268
LOF 0.026 0.034 0.078 0.175 0.687

Here, we clearly see that LOF variants are inferred to be very deleterious, with roughly 2/3 of all new LOF mutations
having a selection coefficient larger that 10−2.

12.3. Inferring the DFE 103

moments, Release 1.1.0

12.4 Sensitivity to the demographic model

Here, we’ll fit a simpler models to the synonymous variants, and rerun the same DFE inference to check if the results
are robust. We’ll first fit a two-epoch model (again accounting for ancestral misidentification), and then simply use a
standard neutral model without size changes.

Throughout this section, we again print log-likelihoods of the fits, which can be compared to the fits made with the
more complex demographic model above.

def model_func(params, ns):
nu, T, p_misid = params
fs = moments.Demographics1D.two_epoch([nu, T], ns)
fs = (1 - p_misid) * fs + p_misid * fs[::-1]
return fs

p_guess = [2, .3, 0.02]
lower_bound = [1e-3, 1e-3, 1e-3]
upper_bound = [10, 1, 0.999]

opt_params = moments.Inference.optimize_log_fmin(
p_guess, fs_syn, model_func,
lower_bound=lower_bound, upper_bound=upper_bound)

model = model_func(opt_params, fs_syn.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, fs_syn)
Ne = opt_theta / u_syn / 4

print("optimal demog. parameters:", opt_params[:-1])
print("anc misid:", opt_params[-1])
print("inferred Ne:", f"{Ne:.2f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model, fs_syn))
compare log-likelihood to the more complex demographic model above

moments.Plotting.plot_1d_comp_multinom(model, fs_syn, residual="linear")

optimal demog. parameters: [2.55501781 0.31744642]
anc misid: 0.01842965
inferred Ne: 12518.37
Log-likelihood: -908.8631695023389

104 Chapter 12. DFE inference

moments, Release 1.1.0

Now we cache the selection-SFS for this demography and refit the DFE to the missense variants:

def selection_spectrum(gamma):
rerun = True
ns_sim = 100
while rerun:

ns_sim = 2 * ns_sim
fs = moments.LinearSystem_1D.steady_state_1D(ns_sim, gamma=gamma)
fs = moments.Spectrum(fs)
fs.integrate([opt_params[0]], opt_params[1], gamma=gamma)
if abs(np.max(fs)) > 10 or np.any(np.isnan(fs)):

large gamma-values can require large sample sizes for stability
rerun = True

else:
rerun = False

fs = fs.project(fs_syn.sample_sizes)
return fs

spectrum_cache = {}
spectrum_cache[0] = selection_spectrum(0)

gammas = np.logspace(-4, 3, 61)
for gamma in gammas:

spectrum_cache[gamma] = selection_spectrum(-gamma)

Set up the mutation rates and DFE functions:

12.4. Sensitivity to the demographic model 105

moments, Release 1.1.0

theta_mis = opt_theta * u_mis / u_syn
theta_lof = opt_theta * u_lof / u_syn

dxs = ((gammas - np.concatenate(([gammas[0]], gammas))[:-1]) / 2
+ (np.concatenate((gammas, [gammas[-1]]))[1:] - gammas) / 2)

def dfe_func(params, ns, theta=1):
alpha, beta, p_misid = params
fs = spectrum_cache[0] * scipy.stats.gamma.cdf(gammas[0], alpha, scale=beta)
weights = scipy.stats.gamma.pdf(gammas, alpha, scale=beta)
for gamma, dx, w in zip(gammas, dxs, weights):

fs += spectrum_cache[gamma] * dx * w
fs = theta * fs
return (1 - p_misid) * fs + p_misid * fs[::-1]

def model_func_missense(params, ns):
return dfe_func(params, ns, theta=theta_mis)

def model_func_lof(params, ns):
return dfe_func(params, ns, theta=theta_lof)

Fit the missense data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_mis = moments.Inference.optimize_log_fmin(
p_guess, fs_mis, model_func_missense,
lower_bound=lower_bound, upper_bound=upper_bound,
multinom=False)

model_mis = model_func_missense(opt_params_mis, fs_mis.sample_sizes)
print("optimal parameters (missense):")
print("shape:", f"{opt_params_mis[0]:.4f}")
print("scale:", f"{opt_params_mis[1]:.1f}")
print("anc misid:", f"{opt_params_mis[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_mis, fs_mis))

moments.Plotting.plot_1d_comp_Poisson(model_mis, fs_mis, residual="linear")

optimal parameters (missense):
shape: 0.1830
scale: 733.6
anc misid: 0.0134
Log-likelihood: -999.0833946058101

106 Chapter 12. DFE inference

moments, Release 1.1.0

Fit the LOF data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_lof = moments.Inference.optimize_log_fmin(
p_guess, fs_lof, model_func_lof,
lower_bound=lower_bound, upper_bound=upper_bound,
multinom=False)

model_lof = model_func_lof(opt_params_lof, fs_lof.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_lof[0]:.4f}")
print("scale:", f"{opt_params_lof[1]:.1f}")
print("anc misid:", f"{opt_params_lof[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_lof, fs_lof))

moments.Plotting.plot_1d_comp_Poisson(model_lof, fs_lof, residual="linear")

optimal parameters:
shape: 0.3937
scale: 3802.9
anc misid: 0.0021
Log-likelihood: -246.78811141192315

12.4. Sensitivity to the demographic model 107

moments, Release 1.1.0

We can compare our results using this simpler two-epoch demographic model to our previous findings:

print("Missense DFE:")
shape = opt_params_mis[0]
scale = opt_params_mis[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):

cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
print(f"{s0} <= s < {s1}:", f"{cdf1 - cdf0:.3f}")
if s1 == ss[-1]:

print(f"s >= {s1}:", f"{1 - cdf1:.3f}")

print()
print("LOF DFE:")
shape = opt_params_lof[0]
scale = opt_params_lof[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):

cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
print(f"{s0} <= s < {s1}:", f"{cdf1 - cdf0:.3f}")
if s1 == ss[-1]:

print(f"s >= {s1}:", f"{1 - cdf1:1.3f}")

Missense DFE:
(continues on next page)

108 Chapter 12. DFE inference

moments, Release 1.1.0

(continued from previous page)

0 <= s < 1e-05: 0.251
1e-05 <= s < 0.0001: 0.132
0.0001 <= s < 0.001: 0.198
0.001 <= s < 0.01: 0.266
s >= 0.01: 0.153

LOF DFE:
0 <= s < 1e-05: 0.025
1e-05 <= s < 0.0001: 0.038
0.0001 <= s < 0.001: 0.093
0.001 <= s < 0.01: 0.223
s >= 0.01: 0.621

Comparing to the table above, these look pretty similar - that’s a good sign that our inferences are fairly robust to slightly
poorer fits of the demographic model.

But what if our demographic model is way off, such as assuming constant population size?

here, we'll only fit the ancestral-state misidentification rate
def model_func(params, ns):

p_misid = params
fs = moments.Demographics1D.snm(ns)
fs = (1 - p_misid) * fs + p_misid * fs[::-1]
return fs

p_guess = [0.02]
lower_bound = [1e-3]
upper_bound = [0.999]

opt_params = moments.Inference.optimize_log_fmin(
p_guess, fs_syn, model_func,
lower_bound=lower_bound, upper_bound=upper_bound)

model = model_func(opt_params, fs_syn.sample_sizes)
opt_theta = moments.Inference.optimal_sfs_scaling(model, fs_syn)
Ne = opt_theta / u_syn / 4

print("optimal Ne scaling:", f"{Ne:.2f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model, fs_syn))

moments.Plotting.plot_1d_comp_multinom(model, fs_syn, residual="linear")

optimal Ne scaling: 20930.55
Log-likelihood: -4856.925204009832

12.4. Sensitivity to the demographic model 109

moments, Release 1.1.0

Set up the spectrum cache for this constant-size demographic model:

def selection_spectrum(gamma):
fs = moments.LinearSystem_1D.steady_state_1D(fs_syn.sample_sizes[0], gamma=gamma)
fs = moments.Spectrum(fs)
return fs

spectrum_cache = {}
spectrum_cache[0] = selection_spectrum(0)

gammas = np.logspace(-4, 3, 61)
for gamma in gammas:

spectrum_cache[gamma] = selection_spectrum(-gamma)

Set up the mutation rates and DFE functions:

theta_mis = opt_theta * u_mis / u_syn
theta_lof = opt_theta * u_lof / u_syn

dxs = ((gammas - np.concatenate(([gammas[0]], gammas))[:-1]) / 2
+ (np.concatenate((gammas, [gammas[-1]]))[1:] - gammas) / 2)

def dfe_func(params, ns, theta=1):
alpha, beta, p_misid = params
fs = spectrum_cache[0] * scipy.stats.gamma.cdf(gammas[0], alpha, scale=beta)
weights = scipy.stats.gamma.pdf(gammas, alpha, scale=beta)
for gamma, dx, w in zip(gammas, dxs, weights):

(continues on next page)

110 Chapter 12. DFE inference

moments, Release 1.1.0

(continued from previous page)

fs += spectrum_cache[gamma] * dx * w
fs = theta * fs
return (1 - p_misid) * fs + p_misid * fs[::-1]

def model_func_missense(params, ns):
return dfe_func(params, ns, theta=theta_mis)

def model_func_lof(params, ns):
return dfe_func(params, ns, theta=theta_lof)

Fit the missense data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_mis = moments.Inference.optimize_log_fmin(
p_guess, fs_mis, model_func_missense,
lower_bound=lower_bound, upper_bound=upper_bound,
multinom=False)

model_mis = model_func_missense(opt_params_mis, fs_mis.sample_sizes)
print("optimal parameters (missense):")
print("shape:", f"{opt_params_mis[0]:.4f}")
print("scale:", f"{opt_params_mis[1]:.1f}")
print("anc misid:", f"{opt_params_mis[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_mis, fs_mis))

moments.Plotting.plot_1d_comp_multinom(model_mis, fs_mis, residual="linear")

optimal parameters (missense):
shape: 0.4448
scale: 82.4
anc misid: 0.0147
Log-likelihood: -1065.0798831623356

12.4. Sensitivity to the demographic model 111

moments, Release 1.1.0

Fit the LOF data:

p_guess = [0.2, 1000, 0.01]
lower_bound = [1e-4, 1e-1, 1e-3]
upper_bound = [1e1, 1e5, 0.999]

opt_params_lof = moments.Inference.optimize_log_fmin(
p_guess, fs_lof, model_func_lof,
lower_bound=lower_bound, upper_bound=upper_bound,
multinom=False)

model_lof = model_func_lof(opt_params_lof, fs_lof.sample_sizes)
print("optimal parameters:")
print("shape:", f"{opt_params_lof[0]:.4f}")
print("scale:", f"{opt_params_lof[1]:.1f}")
print("anc misid:", f"{opt_params_lof[2]:.4f}")
print("Log-likelihood:", moments.Inference.ll_multinom(model_lof, fs_lof))

moments.Plotting.plot_1d_comp_multinom(model_lof, fs_lof, residual="linear")

optimal parameters:
shape: 0.5298
scale: 1601.8
anc misid: 0.0021
Log-likelihood: -237.79096099886482

112 Chapter 12. DFE inference

moments, Release 1.1.0

And now comparing our results using the standard neutral model as the underlying demography:

print("Missense DFE:")
shape = opt_params_mis[0]
scale = opt_params_mis[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):

cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
print(f"{s0} <= s < {s1}:", cdf1 - cdf0)
if s1 == ss[-1]:

print(f"s >= {s1}:", 1 - cdf1)

print()
print("LOF DFE:")
shape = opt_params_lof[0]
scale = opt_params_lof[1]
ss = [0, 1e-5, 1e-4, 1e-3, 1e-2]
for s0, s1 in zip(ss[:-1], ss[1:]):

cdf0 = scipy.stats.gamma.cdf(2 * Ne * s0, shape, scale=scale)
cdf1 = scipy.stats.gamma.cdf(2 * Ne * s1, shape, scale=scale)
print(f"{s0} <= s < {s1}:", cdf1 - cdf0)
if s1 == ss[-1]:

print(f"s >= {s1}:", 1 - cdf1)

Missense DFE:
(continues on next page)

12.4. Sensitivity to the demographic model 113

moments, Release 1.1.0

(continued from previous page)

0 <= s < 1e-05: 0.10753022385487969
1e-05 <= s < 0.0001: 0.18776852548601836
0.0001 <= s < 0.001: 0.42679335393077944
0.001 <= s < 0.01: 0.27674764907250127
s >= 0.01: 0.0011602476558212338

LOF DFE:
0 <= s < 1e-05: 0.01423964365346152
1e-05 <= s < 0.0001: 0.033952075858474665
0.0001 <= s < 0.001: 0.11371870531196496
0.001 <= s < 0.01: 0.34510157846413436
s >= 0.01: 0.49298799671196447

These distributions look quite different - in particular, both the missense and LOF variants are inferred to be much more
deleterious. This is because we did not account for population size expansions in it history, which leads to an excess
of rare variants for each class of mutations, and the model over-compensates for the excess of rare variants by fitting a
DFE that is more skewed toward larger selection coefficients.

12.5 References

114 Chapter 12. DFE inference

CHAPTER

THIRTEEN

LINKAGE DISEQUILIBRIUM AND RECOMBINATION

Todo: This module has not been completed.

13.1 Sections

• Recombination and low-order LD statistics

• Ohta and Kimura

• Single population LD decay curves

• Multiple populations

• Selfing

115

moments, Release 1.1.0

116 Chapter 13. Linkage disequilibrium and recombination

CHAPTER

FOURTEEN

SELECTION AT TWO LOCI

By Aaron Ragsdale, January 2021.

Note: This module has not been completed - I’ve placed to-dos where content is incoming. If you find an error here,
or find some aspects confusing, please don’t hesitate to get in touch or open an issue. Thanks!

Most users of moments will be most interested in computing the single-site SFS and comparing it to data. However,
moments can do much more, such as computing expectations for LD under complex demography, or triallelic or two-
locus frequency spectra. Here, we’ll explore what we can do with the two-locus methods available in moments.
TwoLocus.

import moments.TwoLocus
import numpy as np
import matplotlib.pylab as plt
import pickle, gzip

14.1 The two-locus allele frequency spectrum

Similar to the single-site SFS, the two-locus frequency spectrum stores the number (or density) of pairs of loci with
given two-locus haplotype counts. Suppose the left locus permits alleles A/a and the right locus permits B/b, so that
there are four possible haplotypes: (AB, Ab, aB, and ab). In a sample size of n haploid samples, we observe some
number of each haplotype, 𝑛𝐴𝐵 + 𝑛𝐴𝑏 + 𝑛𝑎𝐵 + 𝑛𝑎𝑏 = 𝑛. The two-locus frequency spectrum stores the observed
number of pairs of loci with each possible sampling configuration, so that Ψ𝑛(𝑖, 𝑗, 𝑘) is the number (or density) of
pairs of loci with i type AB, j type Ab, and k type aB.

moments.TwoLocus lets us compute the expectation of Ψ𝑛 for single-population demographic scenarios, allowing for
population size changes over time, as well as arbitrary recombination distance separating the two loci and selection at
one or both loci. While moments.TwoLocus has a reversible mutation model implemented, here we’ll focus on the
infinite sites model (ISM), under the assumption that 𝑁𝑒𝜇 ≪ 1 at both loci.

Below, we’ll walk through how to compute the sampling distribution for two-locus haplotypes for a given sample
size, describe its relationship to common measures of linkage disequilibrium (LD), and explore how recombination,
demography, and selection interacts to alter expected patterns of LD. In particular, we’ll focus on a few different models
of selection, dominance, and epistasic interactions between loci, and ask under what conditions those patterns are
expected to differ or to be confounded.

117

moments, Release 1.1.0

14.1.1 Citing this work

Demographic inference using a diffusion approximation-based solution for Ψ𝑛 was introduced in
[Ragsdale_Gutenkunst]. The moments-based method, which is implemented here, was described in [Ragsdale_Gravel].

14.2 Two-locus haplotype distribution under neutrality

14.2.1 A quick comment on computational efficiency

The frequency spectrum Ψ𝑛 is displayed as a 3-dimensional array in moments, and the size grows quite quickly in the
sample size 𝑛. (The number of frequency bins is 1

6 (𝑛+ 1)(𝑛+ 2)(𝑛+ 3), so it grows as 𝑛3.) Thus, solving for Ψ gets
quite expensive for large sample sizes.

Here, we see the time needed to compute the equilibrium frequency spectrum for a given sample size. Recombination
requires computing a jackknife operator for approximate moment closure, which gets expensive for large sample sizes.
However, we can cache and reuse this jackknife matrix (the default behavior), so that much of the computational time
is saved from having to recompute that large matrix. However, we see that simply computing the steady-state solution
still gets quite expensive as the sample sizes increase.

Below, we’ll see that for non-zero recombination (as well as selection) our accuracy improves as we increase the sample
size. For this reason, we’ve pre-computed and cached results throughout this page, and the code blocks give examples
of how those results were created.

14.2.2 Two neutral loci

The moments.TwoLocus solution for the neutral frequency spectrum without recombination (𝜌 = 4𝑁𝑒𝑟 = 0) is exact,
while 𝜌 > 0 and selection require a moment-closure approximation. This approximation grows more accurate for larger
𝑛.

To get familiar with some common two-locus statistics (either summaries of Ψ𝑛 and Ψ itself), we can compare to some
classical results, such as the expectation for 𝜎2

𝑑 = E[𝐷2]
E[𝑝(1−𝑝)𝑞(1−𝑞)] , where D is the standard covariance measure of LD,

and p and q are allele frequencies at the left and right loci, respectively [Ohta]:

rho = 0
n = 10
Psi = moments.TwoLocus.Demographics.equilibrium(n, rho=rho)
sigma_d2 = Psi.D2() / Psi.pi2()

(continues on next page)

118 Chapter 14. Selection at two loci

moments, Release 1.1.0

(continued from previous page)

print(r"moments.TwoLocus σ_d^2, $r=0$:", sigma_d2)
print(r"Ohta and Kimura expectation, $r=0$:", 5 / 11)

moments.TwoLocus σ_d^2, $r=0$: 0.4545454545454553
Ohta and Kimura expectation, $r=0$: 0.45454545454545453

And we can plot the LD-decay curve for 𝜎2
𝑑 for a range of recombination rates and a few different sample sizes, and

compare to [Ohta]’s expectation, which is 𝜎2
𝑑 =

5+ 1
2𝜌

11+ 13
2 𝜌+ 1

2𝜌
2 :

14.2. Two-locus haplotype distribution under neutrality 119

moments, Release 1.1.0

The moments approximation breaks down for recombination rates around 𝜌 ≈ 50 but is very accurate for lower recom-
bination rates, and this accuracy increases with the sample size. To be safe, we can assume that numerical error starts
to creep in around 𝑟ℎ𝑜 ≈ 25, which for human parameters, is very roughly 50 or 100kb. So we’re limited to looking
at LD in relatively shorter regions. For higher recombination rates, we can turn to moments.LD, which lets us model
multiple populations, but is restricted to neutral loci and low-order statistics.

120 Chapter 14. Selection at two loci

moments, Release 1.1.0

The statistics E[𝐷2] and E[𝑝(1 − 𝑝)𝑞(1 − 𝑞)] are low-order summaries of the full sampling distribution, similar to
how heterozygosity or Tajima’s D are low-order summaries of the single-site SFS. We can visualize some features
of the full two-locus haplotype frequency distribution instead, following Figure 1 in Hudson’s classical paper on the
two-locus sampling distribution [Hudson]. Here, we’ll look at a slice in the 3-dimensional distribution: if we observe
𝑛𝐴 samples carrying A at the left locus, and 𝑛𝐵 carrying B at the right locus, what is the probability that we observe
n_{AB} haplotypes with A and B coupled in the same sample? This marginal distribution will depend on 𝜌:

rhos = [0.5, 5.0, 30.0]
n = 30
nA = 15
nB = 12

first we'll get the slice for the given frequencies from the "hnrho" file
from RR Hudson: http://home.uchicago.edu/~rhudson1/source/twolocus.html
hudson = {}
import gzip
with gzip.open("./data/h30rho.gz", "rb") as fin:

at_frequencies = False
for line in fin:

l = line.decode()
if "freq" in l:

if int(l.split()[1]) == nA and int(l.split()[2]) == nB:
at_frequencies = True

else:
at_frequencies = False

if at_frequencies:
rho = float(l.split()[1])
if rho in rhos:

hudson[rho] = np.array([float(v) for v in l.split()[2:]])

fig = plt.figure(figsize=(12, 4))
for ii, rho in enumerate(rhos):

results are cached, having used the following line to create the spectra
F = moments.TwoLocus.Demographics.equilibrium(n, rho=rho)
F = pickle.load(gzip.open(f"./data/two-locus/eq.n_{n}.rho_{rho}.fs.gz", "rb"))
counts, pAB = moments.TwoLocus.Util.pAB(F, nA, nB)
pAB /= pAB.sum()
ax = plt.subplot(1, 3, ii + 1)
ax.bar(counts - 0.2, hudson[rho] / hudson[rho].sum(), width=0.35, label="Hudson")
ax.bar(counts + 0.2, pAB, width=0.35, label="moments.TwoLocus")
ax.set_title(f"rho = {rho}")
if ii == 0:

ax.set_ylabel("Probability")
ax.legend()

if ii == 1:
ax.set_xlabel(r"n_{AB}")

fig.tight_layout()

14.2. Two-locus haplotype distribution under neutrality 121

moments, Release 1.1.0

For low recombination rates, the marginal distribution of AB haplotypes is skewed toward the maximum or minimum
number of copies, resulting in higher LD, while for larger recombination rates, the distribution of 𝑛𝐴𝐵 is concentrated
around frequencies that result in low levels of LD. We can also see that moments.TwoLocus agrees well with Hudson’s
results under neutrality and steady state demography.

Note: Below, we’ll be revisiting these same statistics and seeing how various models of selection at the two loci, as
well as non-steady state demography, distort the expected distributions.

14.3 How does selection interact across multiple loci?

There has been a recent resurgence of interest in learning about the interaction of selection at two or more loci (e.g.,
for studies within the past few years, see [Sohail], [Garcia], [Sandler], [Good]). This has largely been driven by the
relatively recent availability of large-scale sequencing datasets that allow us to observe patterns of allele frequencies and
LD for negatively selected loci that may be segregating at very low frequencies in a population. Some of these studies
are theory-driven (e.g., [Good]), while others rely on forward Wright-Fisher simulators (such as SLiM or fwdpy11) to
compare observed patterns between data and simulation.

These approaches have their limitations: analytical results are largely constrained to simple selection scenarios and
steady-state demography, while simulation studies are computationally expensive and thus often end up limited to
still a handful of selection and demographic scenarios. Numerical approaches to compute expectations of statistics of
interest could therefore provide a far more efficient way to compute explore parameter regimes and compare model
expectations to data in inference frameworks.

Here, we’ll explore a few selection models, including both dominance and epistatic effects, that theory predicts should
result in different patterns of LD between two selected loci. We first describe the selection models, and then we compare
their expected patterns of LD.

14.3.1 Selection models at two loci

At a single locus, the effects of selection and dominance are captured by the selection coefficient 𝑠 and the dominance
coefficient ℎ, so that fitnesses of the diploid genotypes are given by

Table 14.1: Single-locus fitnesses.
Genotype Relative fitness
aa 1
Aa 1 + 2ℎ𝑠
AA 1 + 2𝑠

122 Chapter 14. Selection at two loci

moments, Release 1.1.0

If ℎ = 1/2, i.e. selection is additive, this model reduces to a haploid selection model where genotype A has relative
fitness 1 + 𝑠 compared to a.

Additive selection, no epistasis

Additive selection models for two loci, like in the single-locus case, reduce to haploid-based models, where we only
need to know the relative fitnesses of the two-locus haplotypes AB, Ab, aB, and ab. When we say “no epistasis,” we
typically mean that the relative fitness of an individual carrying both derived alleles (AB) is additive across loci, so that
if 𝑠𝐴 is the selection coefficient at the left (A/a) locus, and 𝑠𝐵 is the selection coefficient at the right (B/b) locus, then
𝑠𝐴𝐵 = 𝑠𝐴 + 𝑠𝐵 .

Table 14.2: No epistasis or dominance emits a haploid selection model.
Genotype Relative fitness
ab 1
Ab 1 + 𝑠𝐴
aB 1 + 𝑠𝐵
AB 1 + 𝑠𝐴𝐵 = 1 + 𝑠𝐴 + 𝑠𝐵

Additive selection with epistasis

Epistasis is typically modeled as a factor 𝜖 that either increases or decreases the selection coefficient for the AB haplo-
type, so that 𝑠𝐴𝐵 = 𝑠𝐴 + 𝑠𝐵 + 𝜖. If |𝑠𝐴𝐵 | > |𝑠𝐴| + |𝑠𝐴|, i.e. the fitness effect of the AB haplotype is greater than the
sum of the effect of the Ab and aB haplotypes, the effect is called synergistic epistasis, and if |𝑠𝐴𝐵 | < |𝑠𝐴| + |𝑠𝐴|, it
is refered to as antagonistic epistasis.

Table 14.3: A haploid selection model with epistasis.
Genotype Relative fitness
ab 1
Ab 1 + 𝑠𝐴
aB 1 + 𝑠𝐵
AB 1 + 𝑠𝐴𝐵 = 1 + 𝑠𝐴 + 𝑠𝐵 + 𝜖

14.3. How does selection interact across multiple loci? 123

moments, Release 1.1.0

Simple dominance, no epistasis

Epistasis is the non-additive interaction of selective effects across loci. The non-additive effect of selection within a
locus is called dominance, when 𝑠𝐴𝐴 ̸= 2𝑠𝐴𝑎. Without epistasis, so that 𝑠𝐴𝐵 = 𝑠𝐴 + 𝑠𝐵 , and allowing for different
selection and dominance coefficients at the two loci, the fitness effects for two-locus diploid genotypes takes a simple
form analogous to the single-locus case with dominance. Here, we define the relative fitnesses of two-locus diploid
genotypes, which relies on the selection and dominance coefficients at the left and right loci:

Table 14.4: Accounting for dominance requires modeling selection for
diploid genotypes, instead of the model reducing to selection on haploid
genotypes.

Genotype Relative fitness
aabb 1
Aabb 1 + 2ℎ𝐴𝑠𝐴
AAbb 1 + 2𝑠𝐴
aaBb 1 + 2ℎ𝐵𝑠𝐵
AaBb 1 + 2ℎ𝐴𝑠𝐴 + 2ℎ𝐵𝑠𝐵
AABb 1 + 2𝑠𝐴 + 2ℎ𝐵𝑠𝐵
aaBB 1 + 2𝑠𝐵
AaBB 1 + 2ℎ𝐴𝑠𝐴 + 2𝑠𝐵
AABB 1 + 2𝑠𝐴 + 2𝑠𝐵

Both dominance and epistasis

As additional non-additive interactions are introduced, it gets more difficult to succinctly define general selection mod-
els with few parameters. A general selection model that is flexible could simply define a selection coefficient for each
two-locus diploid genotype, in relation to the double wild-type homozygote (aabb). That is, define 𝑠𝐴𝑎𝑏𝑏 as the selec-
tion coefficient for the Aabb genotype, 𝑠𝐴𝑎𝐵𝑏 the selection coefficient for the AaBb genotype, and so on.

Gene-based dominance

In the above model, fitness is determined by combined hetero-/homozygosity at the two loci, but it does not make a
distinction between the different ways that double heterozygotes (AaBb) could arise. Instead, we could imagine a model
where diploid individual fitnesses depend on the underlying haplotypes, i.e. whether selected mutations at the two loci
are coupled on the same background or are on different haplotypes.

For example, consider loss-of-function mutations in coding regions. Such mutations tend to be severely damaging.
We could think of the situation where diploid individual fitness is strongly reduced when both copies carry a loss-of-
function mutation, but much less reduced if the individual has at least one copy without a mutation. In this scenario,
the haplotype combination Ab / aB will confer more reduced fitness compared to the combination AB / ab, even though
both are double heterozygote genotypes.

Perhaps the simplest model for gene-based dominance assumes that derived mutations at the two loci (A and B) carry
the same fitness cost, and fitness depends on the number of haplotype copies within a diploid individual that have at
least one such mutation. This model requires just two parameters, a single selection coefficient s and a single dominance
coefficient h:

124 Chapter 14. Selection at two loci

moments, Release 1.1.0

Table 14.5: A simple gene-based dominance model.
Genotype Relative fitness
ab / ab 1
Ab / ab 1 + 2ℎ𝑠
aB / ab 1 + 2ℎ𝑠
AB / ab 1 + 2ℎ𝑠
Ab / Ab 1 + 2𝑠
aB / aB 1 + 2𝑠
Ab / aB 1 + 2𝑠
AB / Ab 1 + 2𝑠
AB / aB 1 + 2𝑠
AB / AB 1 + 2𝑠

Note: Cite [Sanjak]

14.3.2 How do different selection models affect expected LD statistics?

Here, we will examine some relatively simple models in order to gain some intuition about how selection, along with
recombination and size changes, affect expected patterns of LD, such as the decay curve of 𝜎2

𝑑 and Hudson-style slices
in the two-locus sampling distribution. The selection coefficients will be equal at the two loci, so that the only selection
parameters that change will be the selection models (dominance and epistasis).

Additive selection with and without epistasis

Let’s first see how simple, additive selection distorts expected LD away from neutral expectations at steady state. Plotted
below are decay curves for both 𝜎2

𝑑 and 𝜎2
𝑑 = E[𝐷]E[𝑝(1 − 𝑝)𝑞(1 − 𝑞)], a common signed LD statistic.

For each parameter pair of selection coefficient 𝛾 = 2𝑁𝑒𝑠 and 𝑟ℎ𝑜, we use the “helper” function that creates the
input selection parameters for the AB, Ab, and aB haplotypes, and then simulate the equilibrium two-locus sampling
distribution:

sel_params = moments.TwoLocus.Util.additive_epistasis(gamma, epsilon=0)
epsilon=0 means no epistasis, so s_AB = s_A + s_B
F = moments.TwoLocus.Demographics.equilibrium(n, rho=rho, sel_params=sel_params)
sigma_d1 = F.D() / F.pi2()
sigma_d2 = F.D2() / F.pi2()

14.3. How does selection interact across multiple loci? 125

moments, Release 1.1.0

Already with this very simple selection model (no epistasis, no dominance, equal selection at both loci), we find some
interesting behavior. For very strong or very week selection, signed-LD remains close to zero, but for intermediate
selection, average 𝐷 can be significantly negative. As fitness effects get stronger, 𝜎2

𝑑 is reduced dramatically compare
to neutral expectations.

126 Chapter 14. Selection at two loci

moments, Release 1.1.0

Todo: Plots of frequency conditioned LD.

The “helper” function that we used above converts input 𝛾 and 𝜖 to the selection parameters that are passed to moments.
TwoLocus.Demographics functions. The additive epistasis model implemented in the helper function (moments.
TwoLocus.Util.additive_epistasis) returns [(1 + 𝜖)(𝛾𝐴 + 𝛾𝐵), 𝛾𝐴, 𝛾𝐵], so that if 𝜖 > 0, we have synergistic
epistasis, and if 𝜖 < 0, we have antagonistic epistasis. Any value of 𝜖 is permitted, and note that if 𝜖 is less than −1,
we get reverse-sign epistasis.

We’ll focus on two selection regions: mutations that are slightly deleterious with 𝛾 = 1, and stronger selection with
𝛾 = 20. With an effective population size of 10,000, note that 𝛾 = 20 corresponds to 𝑠 = 0.001 - by no means a lethal
mutation, but strong enough to see some interesting differences between selection regimes.

Below we again plot 𝜎2
𝑑 and 𝜎1

𝑑 for each set of parameters:

gammas = [-1, -20]
epsilons = [-1, -0.5, 0, 0.5, 1]

14.3. How does selection interact across multiple loci? 127

moments, Release 1.1.0

From this, we can see that synergistic epistasis decreases 𝜎2
𝑑 and antagonistic epistasis increases it above expectations

for 𝜖 = 0. For signed LD, however, both positive and negative 𝜖 push 𝜎1
𝑑 farther away from zero:

128 Chapter 14. Selection at two loci

moments, Release 1.1.0

As expected, negative 𝜖 (i.e. selection against the AB haplotype is less strong than the sum of selection against A and
B) leads to an excess of coupling LD (pairs with more AB and ab haplotypes) than repulsion LD (pairs with more Ab
and aB haplotypes).

We can see this effect more clearly by looking at a slice in the two-locus sampling distribution. Since we’re considering
negative selection, we’ll look at entries in the sampling distribution with low frequencies at the two loci. For doubletons

14.3. How does selection interact across multiple loci? 129

moments, Release 1.1.0

at both sites:

rhos = [0.5, 5.0, 30.0]
n = 30
nA = 2
nB = 2

epsilon = [-0.5, 0, 1]

fig = plt.figure(figsize=(9, 3))
for ii, rho in enumerate(rhos):

pABs = {}
for eps in epsilon:

sel_params = moments.TwoLocus.Util.additive_epistasis(gammas[0], epsilon=eps)
F = moments.TwoLocus.Demographics.equilibrium(
n, rho=rho, sel_params=sel_params)
F = pickle.load(gzip.open(

f"./data/two-locus/eq.n_{n}.rho_{rho}.sel_"
+ "_".join([str(s) for s in sel_params])
+ ".fs.gz",
"rb"))

counts, pAB = moments.TwoLocus.Util.pAB(F, nA, nB)
pABs[eps] = pAB / pAB.sum()

ax = plt.subplot(1, 3, ii + 1)
ax.bar(counts - 0.25, pABs[epsilon[0]], width=0.22, label=rf"$\epsilon={epsilon[0]}$

→˓")
ax.bar(counts, pABs[epsilon[1]], width=0.22, label=rf"$\epsilon={epsilon[1]}$")
ax.bar(counts + 0.25, pABs[epsilon[2]], width=0.22, label=rf"$\epsilon={epsilon[2]}$

→˓")

ax.set_title(rf"$\rho = {rho}$, $\gamma = {gammas[0]}$")
ax.set_xlabel(r"n_{AB}")
if ii == 0:

ax.legend()
ax.set_ylabel("Probability")

fig.tight_layout()

fig = plt.figure(figsize=(9, 3))
for ii, rho in enumerate(rhos):

pABs = {}
(continues on next page)

130 Chapter 14. Selection at two loci

moments, Release 1.1.0

(continued from previous page)

for eps in epsilon:
sel_params = moments.TwoLocus.Util.additive_epistasis(gammas[1], epsilon=eps)
F = moments.TwoLocus.Demographics.equilibrium(
n, rho=rho, sel_params=sel_params)
F = pickle.load(gzip.open(

f"./data/two-locus/eq.n_{n}.rho_{rho}.sel_"
+ "_".join([str(s) for s in sel_params])
+ ".fs.gz",
"rb"))

counts, pAB = moments.TwoLocus.Util.pAB(F, nA, nB)
pABs[eps] = pAB / pAB.sum()

ax = plt.subplot(1, 3, ii + 1)
ax.bar(counts - 0.25, pABs[epsilon[0]], width=0.22, label=rf"$\epsilon={epsilon[0]}$

→˓")
ax.bar(counts, pABs[epsilon[1]], width=0.22, label=rf"$\epsilon={epsilon[1]}$")
ax.bar(counts + 0.25, pABs[epsilon[2]], width=0.22, label=rf"$\epsilon={epsilon[2]}$

→˓")

ax.set_title(rf"$\rho = {rho}$, $\gamma = {gammas[1]}$")
ax.set_xlabel(r"n_{AB}")
if ii == 0:

ax.legend()
ax.set_ylabel("Probability")

fig.tight_layout()

And while very few mutations will reach high frequency, we can also look at the case with 𝑛𝐴 = 15 and 𝑛𝐵 = 12 in a
sample size of 30. Here, because selection and recombination require the jackknife approximation which works better
with larger sample sizes, we solved for the equilibrium distribution using size 𝑛 = 60 and then projected to size 30.

n = 60
n_proj = 30
nA = 15
nB = 12
rho = 1

F = moments.TwoLocus.Demographics.equilibrium(n, rho=rho, sel_params=sel_params)
by default, we usually cache projection steps, but set cache=False here to
save on memory usage
F_proj = F.project(n_proj, cache=False)

(continues on next page)

14.3. How does selection interact across multiple loci? 131

moments, Release 1.1.0

(continued from previous page)

counts, pAB = moments.TwoLocus.Util.pAB(F_proj, nA, nB)
pAB /= pAB.sum()

Dominance

We again assume fitness effects are the same at both loci, and now explore how dominance affects LD. We’ll start
by looking at the “simple” dominance model without epistasis, so that fitness effects are additive across loci. When
simulating with dominance, the selection model no longer collapses to a haploid model, but instead we need to specify
the selection coefficients for each possible diploid haplotype pair AB/AB, AB/Ab, etc. We’ll use another helper function
to generate those selection coefficients and pass them to the sel_params_general keyword argument.

For example, to simulate the equilibrium distribution with selection coefficient -5 and dominance coefficient 0.1 under
the simple dominance model:

gamma = -5
h = 0.1
sel_params = moments.TwoLocus.Util.simple_dominance(gamma, h=h)
F = moments.TwoLocus.Demographics.equilibrium(n, rho, sel_params_general=sel_params)

Let’s look at how 𝜎2
𝑑 and 𝜎1

𝑑 are affected by dominance.

132 Chapter 14. Selection at two loci

moments, Release 1.1.0

Squared LD (𝜎2
𝑑) is increased for recessive variants, while pairs of dominant mutations reduce it below expectations

for additive variants.

14.3. How does selection interact across multiple loci? 133

moments, Release 1.1.0

Similarly, recessive mutations lead to larger average negative signed LD. However, this pattern also depends on the
underlying selection coefficient, with LD decay curves that can vary qualitatively for different selection coefficients
and recombination rates between loci, even when dominance is equivalent.

134 Chapter 14. Selection at two loci

moments, Release 1.1.0

Todo: Relate to associative overdominance work, e.g. Charlesworth, and Hill-Robertson interference.

Gene-based dominance

Todo: All the comparisons, show LD curves and expectations for signed LD, depending on the selection model, maybe
explore how population size changes distort these expectations.

Non-steady-state demography

𝒦

Todo: Are any of these statistics quite sensitive to bottlenecks or expansions?

Todo: Discussion on what we can expect to learn from signed LD-based inferences. Are the various selection models
and demography hopelessly confounded?

14.4 References

14.4. References 135

moments, Release 1.1.0

136 Chapter 14. Selection at two loci

CHAPTER

FIFTEEN

API FOR SITE FREQUENCY SPECTRA

15.1 The Spectrum object

class moments.Spectrum(data, mask=False, mask_corners=True, data_folded=None, check_folding=True,
dtype=<class 'float'>, copy=True, fill_value=nan, keep_mask=True, shrink=True,
pop_ids=None)

Represents a single-locus biallelic frequency spectrum.

Spectra are represented by masked arrays. The masking allows us to ignore specific entries in the spectrum.
When simulating under the standard infinite sites model (ISM), the entries we mask are the bins specifying
absent or fixed variants. When using a reversible mutation model (i.e. the finite genome model), we track the
density of variants in fixed bins, setting mask_corners to False.

Parameters

• data (array) – An array with dimension equal to the number of populations. Each dimen-
sion has length 𝑛𝑖 + 1, where 𝑛𝑖 is the sample size for the i-th population.

• mask – An optional array of the same size as data. ‘True’ entries in this array are masked
in the Spectrum. These represent missing data categories. (For example, you may not trust
your singleton SNP calling.)

• mask_corners – If True (default), the ‘observed in none’ and ‘observed in all’ entries of
the FS will be masked. Typically these entries are masked. In the defaul infinite sites model,
moments does not reliably calculate the fixed-bin entries, so you will almost always want
mask_corners=True. The exception is if we are simulating under the finite genome model,
in which case we track the probability of a site to be fixed for either allele.

• data_folded (bool, optional) – If True, it is assumed that the input data is folded. An
error will be raised if the input data and mask are not consistent with a folded Spectrum.

• check_folding (bool, optional) – If True and data_folded=True, the data and mask
will be checked to ensure they are consistent with a folded Spectrum. If they are not, a
warning will be printed.

• pop_ids (list of strings, optional) – Optional list of strings containing the popu-
lation labels, with length equal to the dimension of data.

Returns
A frequency spectrum object, as a masked array.

Fst(pairwise=False)
Wright’s Fst between the populations represented in the fs.

This estimate of Fst assumes random mating, because we don’t have heterozygote frequencies in the fs.

137

moments, Release 1.1.0

Calculation is by the method of Weir and Cockerham Evolution 38:1358 (1984). For a single SNP, the
relevant formula is at the top of page 1363. To combine results between SNPs, we use the weighted average
indicated by equation 10.

Parameters
pairwise (bool) – Defaults to False. If True, returns a dictionary of all pairwise Fst within
the multi-dimensional spectrum.

S()

Returns the number of segregating sites in the frequency spectrum.

Tajima_D()

Returns Tajima’s D.

Following Gillespie “Population Genetics: A Concise Guide” pg. 45

Watterson_theta()

Returns Watterson’s estimator of theta.

Note: This function is only sensible for 1-dimensional spectra.

Zengs_E()

Returns Zeng et al.’s E statistic.

From Zeng et al., “Statistical Tests for Detecting Positive Selection by Utilizing High-Frequency Variants.”
Genetics, 2016.

admix(idx0, idx1, num_lineages, proportion, new_id=None)
Returns a new frequency spectrum with an admixed population that arose through admixture from indexed
populations with given number of lineages and proportions from parental populations. This serves as a
wrapper for Manips.admix_into_new, with the added feature of handling pop_ids.

If the number of lineages that move are equal to the number of lineages previously present in a source
population, that source population is marginalized.

Parameters

• idx0 (int) – Index of first source population.

• idx1 (int) – Index of second source population.

• num_lineages (int) – Number of lineages in the new population. Cannot be greater than
the number of existing lineages in either source populations.

• proportion (float) – The proportion of lineages that come from the first source popu-
lation (1-proportion acestry comes from the second source population). Must be a number
between 0 and 1.

• new_id (str, optional) – The ID of the new population. Can only be used if the pop-
ulation IDs are specified in the input SFS.

branch(idx, n, new_id=None)
A “branch” event, where a population gives rise to a child population, while persisting. This is conceptually
similar to the split event. The number of lineages in the new population is provided, and the number of
lineages in the source/parental population is the original sample size minus the number requested for the
branched population. Returns a new frequency spectrum.

Parameters

• idx (int) – The index of the population to branch.

138 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

• n (int) – The sample size of the new population.

• new_id – The population ID of the branch populations. The parental population retains its
original population ID. Can only be used if pop_ids are given for the input spectrum.

fixed_size_sample(nsamples, include_masked=False)
Generate a resampled SFS from the current one. Thus, the resampled SFS follows a multinomial distribu-
tion given by the proportion of sites in each bin in the original SFS.

Parameters

• nsamples (int) – Number of samples to include in the new SFS.

• include_masked (bool, optional) – If True, use all bins from the SFS. Otherwise,
use only non-masked bins. Defaults to False.

fold()

Returns a folded frequency spectrum.

The folded fs assumes that information on which allele is ancestral or derived is unavailable. Thus the fs
is in terms of minor allele frequency. This makes the fs into a “triangular” array. If a masked cell is folded
into non-masked cell, the destination cell is masked as well.

Folding is not done in-place. The return value is a new Spectrum object.

static from_angsd(sfs_file, sample_sizes, pop_ids=None, folded=False, mask_corners=True)
Convert ANGSD output to a moments Spectrum object. The sample sizes are given as number of haploid
genome copies (twice the number of sampled diploid individuals).

Parameters

• sfs_file (string) – The n-dimensional SFS from ANGSD. This should be a file with a
single line of numbers, as entries in the SFS.

• sample_sizes (list) – A list of integers with length equal to the number of population,
storing the haploid sample size in each population. The order must match the population
order provided to ANGSD.

• pop_ids (list) – A list of strings equal with length equal to the number of population,
specifying the population name for each.

• folded (bool) – If False (default), we assume ancestral states are known, returning an
unfolded SFS. If True, the returned SFS is folded.

• mask_corners (bool) – If True (default), mask the fixed bins in the SFS. If False, the
fixed bins will remain unmasked.

Returns
A moments site frequency spectrum.

Return type
moments.Spectrum

static from_data_dict(data_dict, pop_ids, projections, mask_corners=True, polarized=True)
Spectrum from a dictionary of polymorphisms.

The data dictionary should be organized as:

{snp_id: {
'segregating': ['A','T'],
'calls': {

'YRI': (23,3),
(continues on next page)

15.1. The Spectrum object 139

moments, Release 1.1.0

(continued from previous page)

'CEU': (7,3)
},
'outgroup_allele': 'T'

}}

The ‘calls’ entry gives the successful calls in each population, in the order that the alleles are specified in
‘segregating’. Non-diallelic polymorphisms are skipped.

Parameters

• pop_ids – list of which populations to make fs for.

• projections – list of sample sizes to project down to for each population.

• polarized – If True, the data are assumed to be correctly polarized by ‘outgroup_allele’.
SNPs in which the ‘outgroup_allele’ information is missing or ‘-’ or not concordant with the
segregating alleles will be ignored. If False, any ‘outgroup_allele’ info present is ignored,
and the returned spectrum is folded.

static from_demes(g, sampled_demes=None, sample_sizes=None, sample_times=None, samples=None,
Ne=None, unsampled_n=4, gamma=None, h=None)

Takes a deme graph and computes the SFS. demes is a package for specifying demographic models in a user-
friendly, human-readable YAML format. This function automatically parses the demographic description
and returns a SFS for the specified populations and sample sizes.

Note: If a deme sample time is requested that is earlier than the deme’s end time, for example to simulate
ancient samples, we must create a new population for that ancient sample. This can cause large slow-downs,
as the computation cost of computing the SFS grows quickly in the number of populations.

Parameters

• g (str or demes.DemeGraph) – A demes DemeGraph from which to compute the SFS.
The DemeGraph can either be specified as a YAML file, in which case g is a string, or as
a DemeGraph object.

• sampled_demes (list of strings) – A list of deme IDs to take samples from. We can
repeat demes, as long as the sampling of repeated deme IDs occurs at distinct times.

• sample_sizes (list of ints) – A list of the same length as sampled_demes, giving
the sample sizes for each sampled deme.

• sample_times (list of floats, optional) – If None, assumes all sampling oc-
curs at the end of the existence of the sampled deme. If there are ancient samples,
sample_times must be a list of same length as sampled_demes, giving the sampling
times for each sampled deme. Sampling times are given in time units of the original deme
graph, so might not necessarily be generations (e.g. if g.time_units is years)

• Ne (float, optional) – reference population size. If none is given, we use the initial
size of the root deme.

• unsampled_n (int, optional) – The default sample size of unsampled demes, which
must be greater than or equal to 4.

• gamma (float or dict) – The scaled selection coefficient(s), 2*Ne*s. Defaults to None,
which implies neutrality. Can be given as a scalar value, in which case all populations have
the same selection coefficient. Alternatively, can be given as a dictionary, with keys given as
population names in the input Demes model. Any population missing from this dictionary

140 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

will be assigned a selection coefficient of zero. A non-zero default selection coefficient
can be provided, using the key _default. See the Demes exension documentation for more
details and examples.

• h (float or dict) – The dominance coefficient(s). Defaults to additivity (or genic selec-
tion). Can be given as a scalar value, in which case all populations have the same dominance
coefficient. Alternatively, can be given as a dictionary, with keys given as population names
in the input Demes model. Any population missing from this dictionary will be assigned a
dominance coefficient of 1/2 (additivity). A different default dominance coefficient can be
provided, using the key _default. See the Demes exension documentation for more details
and examples.

Returns
A moments site frequency spectrum, with dimension equal to the length of sampled_demes,
and shape equal to sample_sizes plus one in each dimension, indexing the allele frequency
in each deme from 0 to n[i], where i is the deme index.

Return type
moments.Spectrum

static from_file(fid, mask_corners=True, return_comments=False)
Read frequency spectrum from file.

See to_file for details on the file format.

Parameters

• fid (string) – string with file name to read from or an open file object.

• mask_corners (bool, optional) – If True, mask the ‘absent in all samples’ and ‘fixed
in all samples’ entries.

• return_comments (bool, optional) – If true, the return value is (fs, comments), where
comments is a list of strings containing the comments from the file (without #’s).

static from_ms_file(fid, average=True, mask_corners=True, return_header=False,
pop_assignments=None, pop_ids=None, bootstrap_segments=1)

Read frequency spectrum from file of ms output.

Parameters

• fid – string with file name to read from or an open file object.

• average – If True, the returned fs is the average over the runs in the ms file. If False, the
returned fs is the sum.

• mask_corners – If True, mask the ‘absent in all samples’ and ‘fixed in all samples’ entries.

• return_header – If True, the return value is (fs, (command,seeds), where command and
seeds are strings containing the ms commandline and the seeds used.

• pop_assignments – If None, the assignments of samples to populations is done automat-
ically, using the assignment in the ms command line. To manually assign populations, pass
a list of the from [6,8]. This example places the first 6 samples into population 1, and the
next 8 into population 2.

• pop_ids – Optional list of strings containing the population labels. If pop_ids is None,
labels will be “pop0”, “pop1”, . . .

• bootstrap_segments – If bootstrap_segments is an integer greater than 1, the data will
be broken up into that many segments based on SNP position. Instead of single FS, a list
of spectra will be returned, one for each segment.

15.1. The Spectrum object 141

moments, Release 1.1.0

static fromfile(fid, mask_corners=True, return_comments=False)
Read frequency spectrum from file.

See to_file for details on the file format.

Parameters

• fid (string) – string with file name to read from or an open file object.

• mask_corners (bool, optional) – If True, mask the ‘absent in all samples’ and ‘fixed
in all samples’ entries.

• return_comments (bool, optional) – If true, the return value is (fs, comments), where
comments is a list of strings containing the comments from the file (without #’s).

genotype_matrix(num_sites=None, sample_sizes=None, diploid_genotypes=False)
Generate a genotype matrix of independent loci. For multi-population spectra, the individual columns are
filled in the sample order as the populations in the SFS.

Note: Sites in the output genotype matrix are necessarily separated by infinite recombination. The SFS
assumes all loci are segregating independently, so there is no linkage between them.

Returns a genotype matrix of size number of sites by total sample size.

Parameters

• num_sites – Defaults to None, in which case we take a poisson sample from the SFS.
Otherwise, we take a fixed number of sites.

• sample_sizes – The sample size in each population, as a list with length of the number
of dimension (populations) in the SFS.

Diploid_genotypes
Defaults to False, in which case we return a haplotype matrix of size (num_sites x
sum(sample_sizes)). If True, we return a diploid genotype matrix (filled with 0, 1, 2) of
size (num_sites x sum(sample_sizes)/2).

integrate(Npop, tf, dt_fac=0.02, gamma=None, h=None, m=None, theta=1.0, adapt_dt=False,
finite_genome=False, theta_fd=None, theta_bd=None, frozen=[False])

Method to simulate the spectrum’s evolution for a given set of demographic parameters. The SFS is inte-
grated forward-in-time, and the integration occurs in-place, meaning you need only call fs.integrate(
), and the fs is updated.

Parameters

• Npop (list or function that returns a list) – List of populations’ relative ef-
fective sizes. Can be given as a list of positive values for constant sizes, or as a function
that returns a list of sizes at a given time.

• tf (float) – The total integration time in genetic units.

• dt_fac (float, optional) – The timestep factor, default is 0.02. This parameter typi-
cally does not need to be adjusted.

• gamma (float or list of floats, optional) – The selection coefficient (2𝑁𝑒𝑠),
or list of selection coefficients if more than one population.

• h (float or list of floats, optional) – The dominance coefficient, or list of
dominance coefficients in each population, if more than one population.

142 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

• m (array-like, optional) – The migration rates matrix as a 2-D array with shape nxn,
where n is the number of populations. The entry of the migration matrix m[i,j] is the
migration rate from pop j to pop i in genetic units, that is, normalized by 2𝑁𝑒. m may be
either a 2-D array, or a function that returns a 2-D array (with dimensions equal to (num
pops)x(num pops)).

• theta (float, optional) – The scaled mutation rate 4𝑁𝑒𝑢, which defaults to 1. theta
can be used in the reversible model in the case of symmetric mutation rates. In this case,
theta must be set to << 1.

• adapt_dt (bool, optional) – flag to allow dt correction avoiding negative entries.

• finite_genome (bool, optional) – If True, simulate under the finite-genome model
with reversible mutations. If using this model, we can specify the forward and backward
mutation rates, which are per-base rates that are not scaled by number of mutable loci.
If theta_fd and theta_bd are not specified, we assume equal forward and backward
mutation rates provided by theta, which must be set to less that 1. Defaults to False.

• theta_fd (float, optional) – The forward mutation rate 4𝑁𝑒𝑢.

• theta_bd (float, optional) – The backward mutation rate 4𝑁𝑒𝑣.

• frozen (list of bools) – Specifies the populations that are “frozen”, meaning samples
from that population no longer change due or contribute to migration to other populations.
This feature is most often used to indicate ancient samples, for example, ancient DNA. The
frozen parameter is given as a list of same length as number of pops, with True for frozen
populations at the corresponding index, and False for populations that continue to evolve.

log()

Returns the natural logarithm of the entries of the frequency spectrum.

Only necessary because np.ma.log now fails to propagate extra attributes after np 1.10.

marginalize(over, mask_corners=None)
Reduced dimensionality spectrum summing over the set of populations given by over.

marginalize does not act in-place, so the input frequency spectrum will not be altered.

Parameters

• over (list of integers) – List of axes to sum over. For example (0,2) will marginalize
populations 0 and 2.

• mask_corners (bool, optional) – If True, the fixed bins of the resulting spectrum will
be masked. The default behavior is to mask the corners only if at least one of the corners of
the input frequency spectrum is masked. If either corner is masked, the output frequency
spectrum masks the fixed bins.

mask_corners()

Mask the ‘seen in 0 samples’ and ‘seen in all samples’ entries.

pi()

Returns the estimated expected number of pairwise differences between two chromosomes in the popula-
tion.

Note: This estimate includes a factor of sample_size / (sample_size - 1) to make E[𝜋] = 𝜃.

15.1. The Spectrum object 143

moments, Release 1.1.0

project(ns)
Project to smaller sample size.

project does not act in-place, so that the input frequency spectrum is not changed.

Parameters
ns (list of integers) – Sample sizes for new spectrum.

pulse_migrate(idx_from, idx_to, keep_from, proportion)
Mass migration (pulse admixture) between two existing populations. The target (destination) population
has the same number of lineages in the output SFS, and the source population has keep_from number of
lineages after the pulse event. The proportion is the expected ancestry proportion in the target population
that comes from the source population.

This serves as a wrapper for Manips.admix_inplace.

Depending on the proportion and number of lineages, because this is an approximate operation, we often
need a large number of lineages from the source population to maintain accuracy.

Parameters

• idx_from (int) – Index of source population.

• idx_to (int) – Index of targeet population.

• keep_from (int) – Number of lineages to keep in source population.

• proportion (float) – Ancestry proportion of source population that migrates to target
population.

sample()

Generate a Poisson-sampled fs from the current one.

Entries where the current fs is masked or 0 will be masked in the output sampled fs.

scramble_pop_ids(mask_corners=True)
Spectrum corresponding to scrambling individuals among populations.

This is useful for assessing how diverged populations are. Essentially, it pools all the individuals represented
in the fs and generates new populations of random individuals (without replacement) from that pool. If this
fs is significantly different from the original, that implies population structure.

split(idx, n0, n1, new_ids=None)
Splits a population in the SFS into two populations, with the extra population placed at the end. Returns a
new frequency spectrum.

Parameters

• idx (int) – The index of the population to split.

• n0 (int) – The sample size of the first split population.

• n1 (int) – The sample size of the second split population.

• new_ids (list of strings, optional) – The population IDs of the split populations.
Can only be used if pop_ids are given for the input spectrum.

swap_axes(ax1, ax2)
Uses np’s swapaxes function, but also swaps pop_ids as appropriate if pop_ids are given.

Note: fs.swapaxes(ax1, ax2)will still work, but if population ids are given, it won’t swap the pop_ids
entries as expected.

144 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

Parameters

• ax1 (int) – The index of the first population to swap.

• ax2 (int) – The index of the second population to swap.

theta_L()

Returns theta_L as defined by Zeng et al. “Statistical Tests for Detecting Positive Selection by Utilizing
High-Frequency Variants” (2006) Genetics

Note: This function is only sensible for 1-dimensional spectra.

to_file(fid, precision=16, comment_lines=[], foldmaskinfo=True)
Write frequency spectrum to file.

The file format is:

• Any number of comment lines beginning with a ‘#’

• A single line containing N integers giving the dimensions of the fs array. So this line would be ‘5 5 3’
for an SFS that was 5x5x3. (That would be 4x4x2 samples.)

• On the same line, the string ‘folded’ or ‘unfolded’ denoting the folding status of the array

• On the same line, optional strings each containing the population labels in quotes separated by spaces,
e.g. “pop 1” “pop 2”

• A single line giving the array elements. The order of elements is e.g.: fs[0,0,0] fs[0,0,1] fs[0,0,2] . . .
fs[0,1,0] fs[0,1,1] . . .

• A single line giving the elements of the mask in the same order as the data line. ‘1’ indicates masked,
‘0’ indicates unmasked.

Parameters

• fid (string) – string with file name to write to or an open file object.

• precision (int, optional) – precision with which to write out entries of the SFS.
(They are formated via %.<p>g, where <p> is the precision.) Defaults to 16.

• comment_lines (list of strings, optional) – list of strings to be used as com-
ment lines in the header of the output file.

• foldmaskinfo (bool, optional) – If False, folding and mask and population label in-
formation will not be saved.

tofile(fid, precision=16, comment_lines=[], foldmaskinfo=True)
Write frequency spectrum to file.

The file format is:

• Any number of comment lines beginning with a ‘#’

• A single line containing N integers giving the dimensions of the fs array. So this line would be ‘5 5 3’
for an SFS that was 5x5x3. (That would be 4x4x2 samples.)

• On the same line, the string ‘folded’ or ‘unfolded’ denoting the folding status of the array

• On the same line, optional strings each containing the population labels in quotes separated by spaces,
e.g. “pop 1” “pop 2”

15.1. The Spectrum object 145

moments, Release 1.1.0

• A single line giving the array elements. The order of elements is e.g.: fs[0,0,0] fs[0,0,1] fs[0,0,2] . . .
fs[0,1,0] fs[0,1,1] . . .

• A single line giving the elements of the mask in the same order as the data line. ‘1’ indicates masked,
‘0’ indicates unmasked.

Parameters

• fid (string) – string with file name to write to or an open file object.

• precision (int, optional) – precision with which to write out entries of the SFS.
(They are formated via %.<p>g, where <p> is the precision.) Defaults to 16.

• comment_lines (list of strings, optional) – list of strings to be used as com-
ment lines in the header of the output file.

• foldmaskinfo (bool, optional) – If False, folding and mask and population label in-
formation will not be saved.

unfold()

Returns an unfolded frequency spectrum.

It is assumed that each state of a SNP is equally likely to be ancestral.

Unfolding is not done in-place. The return value is a new Spectrum object.

unmask_all()

Unmask all entires of the frequency spectrum.

15.2 Miscellaneous functions

moments.Misc.perturb_params(params, fold=1, lower_bound=None, upper_bound=None)
Generate a perturbed set of parameters. Each element of params is randomly perturbed fold factors of 2 up or
down.

Parameters

• fold (float, optional) – Number of factors of 2 to perturb by, defaults to 1.

• lower_bound (list of floats, optional) – If not None, the resulting parameter set
is adjusted to have all value greater than lower_bound.

• upper_bound (list of floats, optional) – If not None, the resulting parameter set
is adjusted to have all value less than upper_bound.

moments.Misc.make_data_dict_vcf(vcf_filename, popinfo_filename, filter=True, flanking_info=[None, None],
skip_multiallelic=True)

Parse a VCF file containing genomic sequence information, along with a file identifying the population of each
sample, and store the information in a properly formatted dictionary.

Each file may be zipped (.zip) or gzipped (.gz). If a file is zipped, it must be the only file in the archive, and the
two files cannot be zipped together. Both files must be present for the function to work.

Parameters

• vcf_filename (str) – Name of VCF file to work with. The function currently works for
biallelic SNPs only, so if REF or ALT is anything other than a single base pair (A, C, T,
or G), the allele will be skipped. Additionally, genotype information must be present in the
FORMAT field GT, and genotype info must be known for every sample, else the SNP will be

146 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

skipped. If the ancestral allele is known it should be specified in INFO field ‘AA’. Otherwise,
it will be set to ‘-‘.

• popinfo_filename (str) – Name of file containing the population assignments for each
sample in the VCF. If a sample in the VCF file does not have a corresponding entry in this
file, it will be skipped. See _get_popinfo for information on how this file must be formatted.

• filter (bool, optional) – If set to True, alleles will be skipped if they have not passed
all filters (i.e. either ‘PASS’ or ‘.’ must be present in FILTER column.

• flanking_info (list of strings, optional) – Flanking information for the refer-
ence and/or ancestral allele can be provided as field(s) in the INFO column. To add this
information to the dict, flanking_info should specify the names of the fields that contain this
info as a list (e.g. [‘RFL’, ‘AFL’].) If context info is given for only one allele, set the other
item in the list to None, (e.g. [‘RFL’, None]). Information can be provided as a 3 base-pair
sequence or 2 base-pair sequence, where the first base-pair is the one immediately preceding
the SNP, and the last base-pair is the one immediately following the SNP.

• skip_multiallelic (bool, optional) – If True, only keep biallelic sites, and skip sites
that have more than one ALT allele.

moments.Misc.count_data_dict(data_dict, pop_ids)
Summarize data in data_dict by mapping SNP configurations to counts.

Returns a dictionary with keys (successful_calls, derived_calls, polarized) mapping to counts of SNPs. Here
successful_calls is a tuple with the number of good calls per population, derived_calls is a tuple of derived calls
per pop, and polarized indicates whether that SNP was polarized using an ancestral state.

Parameters

• data_dict (data dictionary) – data_dict formatted as in Misc.make_data_dict

• pop_ids (list of strings) – IDs of populations to collect data for

moments.Misc.bootstrap(data_dict, pop_ids, projections, mask_corners=True, polarized=True,
bed_filename=None, num_boots=100, save_dir=None)

Use a non-parametric bootstrap on SNP information contained in a dictionary to generate new data sets. The
new data is created by sampling with replacement from independent units of the original data. These units can
simply be chromosomes, or they can be regions specified in a BED file.

This function either returns a list of all the newly created SFS, or writes them to disk in a specified directory.

See moments.Spectrum.from_data_dict() for more details about the options for creating spectra.

Parameters

• data_dict (dict of SNP information) – Dictionary containing properly formatted
SNP information (i.e. created using one of the make_data_dict methods).

• pop_ids (list of strings) – List of population IDs.

• projections (list of ints) – Projection sizes for the given population IDs.

• mask_corners (bool, optional) – If True, mask the invariant bins of the SFS.

• polarized (bool, optional) – If True, we assume we know the ancestral allele. If False,
return folded spectra.

• bed_filename (string as path to bed file) – If None, chromosomes will be used
as the units for resampling. Otherwise, this should be the filename of a BED file specifying
the regions to be used as resampling units. Chromosome names must be consistent between
the BED file and the data dictionary, or bootstrap will not work. For example, if an entry
in the data dict has ID X_Y, then the value in in the chromosome field of the BED file must

15.2. Miscellaneous functions 147

moments, Release 1.1.0

also be X (not chrX, chromosomeX, etc.). If the name field is provided in the BED file, then
any regions with the same name will be considered to be part of the same unit. This may be
useful for sampling as one unit a gene that is located across non-continuous regions.

• num_boots (int, optional) – Number of resampled SFS to generate.

• save_dir (str, optional) – If None, the SFS are returned as a list. Otherwise this should
be a string specifying the name of a new directory under which all of the new SFS should be
saved.

15.3 Demographic functions

Single-population demographic models.

moments.Demographics1D.bottlegrowth(params, ns, pop_ids=None)
Instantanous size change followed by exponential growth.

params = (nuB, nuF, T)

Parameters

• params – Tuple of length three specifying (nuB, nuF, T).

– nuB: Ratio of population size after instantanous change to ancient population size.

– nuF: Ratio of contemporary to ancient population size.

– T: Time in the past at which instantaneous change happened and growth began (in units of
2*Na generations).

• ns – Number of samples in resulting Spectrum.

• pop_ids – Optional list of length one specifying the population ID.

moments.Demographics1D.growth(params, ns, pop_ids=None)
Exponential growth beginning some time ago.

params = (nu, T)

Parameters

• params – Tupe of length two, specifying (nu, t).

– nu: the final population size.

– T: the time in the past at which growth began (in units of 2*Ne generations).

• ns – Number of samples in resulting Spectrum. Must be a list of length one.

• pop_ids – Optional list of length one specifying the population ID.

moments.Demographics1D.snm(ns, pop_ids=None)
Standard neutral model with theta=1.

Parameters

• ns – Number of samples in resulting Spectrum. Must be a list of length one.

• pop_ids – Optional list of length one specifying the population ID.

148 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

moments.Demographics1D.three_epoch(params, ns, pop_ids=None)
Three epoch model of constant sizes.

params = (nuB, nuF, TB, TF)

Parameters

• params – Tuple of length four specifying (nuB, nuF, TB, TF).

– nuB: Ratio of bottleneck population size to ancient pop size.

– nuF: Ratio of contemporary to ancient pop size.

– TB: Length of bottleneck (in units of 2*Na generations).

– TF: Time since bottleneck recovery (in units of 2*Na generations).

• ns – Number of samples in resulting Spectrum.

• pop_ids – Optional list of length one specifying the population ID.

moments.Demographics1D.two_epoch(params, ns, pop_ids=None)
Instantaneous size change some time ago.

params = (nu, T)

Parameters

• params – Tuple of length two, specifying (nu, T).

– nu: the ratio of contemporary to ancient population size.

– T: the time in the past at which size change happened (in units of 2*Ne generations).

• ns – Number of samples in resulting Spectrum. Must be a list of length one.

• pop_ids – Optional list of length one specifying the population ID.

Two-population demographic models.

moments.Demographics2D.IM(params, ns, pop_ids=None)
Isolation-with-migration model with exponential pop growth.

params = (s, nu1, nu2, T, m12, m21)

ns = [n1, n2]

Parameters

• params – Tuple of length 6.

– s: Size of pop 1 after split. (Pop 2 has size 1-s.)

– nu1: Final size of pop 1.

– nu2: Final size of pop 2.

– T: Time in the past of split (in units of 2*Na generations)

– m12: Migration from pop 2 to pop 1 (2 * Na * m12)

– m21: Migration from pop 1 to pop 2

• ns – List of population sizes in first and second populations.

• pop_ids – List of population IDs.

15.3. Demographic functions 149

moments, Release 1.1.0

moments.Demographics2D.IM_pre(params, ns, pop_ids=None)
params = (nuPre, TPre, s, nu1, nu2, T, m12, m21)

ns = [n1, n2]

Isolation-with-migration model with exponential pop growth and a size change prior to split.

• nuPre: Size after first size change

• TPre: Time before split of first size change.

• s: Fraction of nuPre that goes to pop1. (Pop 2 has size nuPre*(1-s).)

• nu1: Final size of pop 1.

• nu2: Final size of pop 2.

• T: Time in the past of split (in units of 2*Na generations)

• m12: Migration from pop 2 to pop 1 (2*Na*m12)

• m21: Migration from pop 1 to pop 2

• n1, n2: Sample sizes of resulting Spectrum.

Parameters

• ns – List of population sizes in first and second populations.

• pop_ids – List of population IDs.

moments.Demographics2D.bottlegrowth(params, ns, pop_ids=None)
params = (nuB, nuF, T)

ns = [n1, n2]

Instantanous size change followed by exponential growth with no population split.

• nuB: Ratio of population size after instantanous change to ancient population size

• nuF: Ratio of contempoary to ancient population size

• T: Time in the past at which instantaneous change happened and growth began (in units of 2*Na generations)

• n1, n2: Sample sizes of resulting Spectrum.

Parameters

• params – List of parameters, (nuB, nuF, T).

• ns – List of population sizes in first and second populations.

• pop_ids – List of population IDs.

moments.Demographics2D.bottlegrowth_split(params, ns, pop_ids=None)
params = (nuB, nuF, T, Ts)

ns = [n1, n2]

Instantanous size change followed by exponential growth then split.

• nuB: Ratio of population size after instantanous change to ancient population size

• nuF: Ratio of contempoary to ancient population size

• T: Time in the past at which instantaneous change happened and growth began (in units of 2*Na generations)

150 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

• Ts: Time in the past at which the two populations split.

• n1, n2: Sample sizes of resulting Spectrum.

Parameters

• ns – List of population sizes in first and second populations.

• pop_ids – List of population IDs.

moments.Demographics2D.bottlegrowth_split_mig(params, ns, pop_ids=None)
params = (nuB, nuF, m, T, Ts) ns = [n1, n2]

Instantanous size change followed by exponential growth then split with migration.

• nuB: Ratio of population size after instantanous change to ancient population size

• nuF: Ratio of contempoary to ancient population size

• m: Migration rate between the two populations (2*Na*m).

• T: Time in the past at which instantaneous change happened and growth began (in units of 2*Na generations)

• Ts: Time in the past at which the two populations split.

• n1, n2: Sample sizes of resulting Spectrum.

Parameters

• ns – List of population sizes in first and second populations.

• pop_ids – List of population IDs.

moments.Demographics2D.snm(ns, pop_ids=None)
ns = [n1, n2]

Standard neutral model with a split but no divergence.

Parameters

• ns – List of population sizes in first and second populations.

• pop_ids – List of population IDs.

moments.Demographics2D.split_mig(params, ns, pop_ids=None)
Split into two populations of specifed size, with migration.

params = (nu1, nu2, T, m)

ns = [n1, n2]

Parameters

• params – Tuple of length 4.

– nu1: Size of population 1 after split.

– nu2: Size of population 2 after split.

– T: Time in the past of split (in units of 2*Na generations)

– m: Migration rate between populations (2*Na*m)

• ns – List of length two specifying sample sizes n1 and n2.

• pop_ids – List of population IDs.

15.3. Demographic functions 151

moments, Release 1.1.0

Three-population demographic models.

moments.Demographics3D.out_of_Africa(params, ns, pop_ids=['YRI', 'CEU', 'CHB'])
The Gutenkunst et al (2009) out-of-Africa that has been reinferred a number of times.

Parameters

• params (list of floats) – List of parameters, in the order (nuA, TA, nuB, TB, nuEu0,
nuEuF, nuAs0, nuAsF, TF, mAfB, mAfEu, mAfAs, mEuAs).

• ns (list of ints) – List of population sizes in each population, in order given by pop_ids.

• pop_ids (list of strings, optional) – List of population IDs, defaults to [“YRI”,
“CEU”, “CHB”].

15.4 Inference functions

moments.Inference.ll(model, data)
The log-likelihood of the data given the model sfs.

Evaluate the log-likelihood of the data given the model. This is based on Poisson statistics, where the probability
of observing k entries in a cell given that the mean number is given by the model is 𝑃 (𝑘) = 𝑒𝑥𝑝(−𝑚𝑜𝑑𝑒𝑙) *
𝑚𝑜𝑑𝑒𝑙𝑘/𝑘!.

Note: If either the model or the data is a masked array, the return ll will ignore any elements that are masked in
either the model or the data.

Parameters

• model – The model Spectrum object.

• data – The data Spectrum object, with same size as model.

moments.Inference.ll_multinom(model, data)
Log-likelihood of the data given the model, with optimal rescaling.

Evaluate the log-likelihood of the data given the model. This is based on Poisson statistics, where the probability
of observing k entries in a cell given that the mean number is given by the model is 𝑃 (𝑘) = 𝑒𝑥𝑝(−𝑚𝑜𝑑𝑒𝑙) *
𝑚𝑜𝑑𝑒𝑙𝑘/𝑘!.

model is optimally scaled to maximize ll before calculation.

Note: If either the model or the data is a masked array, the return ll will ignore any elements that are masked in
either the model or the data.

Parameters

• model – The model Spectrum object.

• data – The data Spectrum object, with same size as model.

moments.Inference.optimal_sfs_scaling(model, data)
Optimal multiplicative scaling factor between model and data.

This scaling is based on only those entries that are masked in neither model nor data.

Parameters

• model – The model Spectrum object.

• data – The data Spectrum object, with same size as model.

152 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

moments.Inference.optimally_scaled_sfs(model, data)
Optimially scale model sfs to data sfs.

Returns a new scaled model sfs.

Parameters

• model – The model Spectrum object.

• data – The data Spectrum object, with same size as model.

moments.Inference.linear_Poisson_residual(model, data, mask=None)
Return the Poisson residuals, (model - data)/sqrt(model), of model and data.

mask sets the level in model below which the returned residual array is masked. The default of 0 excludes values
where the residuals are not defined.

In the limit that the mean of the Poisson distribution is large, these residuals are normally distributed. (If the
mean is small, the Anscombe residuals are better.)

Parameters

• model – The model Spectrum object.

• data – The data Spectrum object, with same size as model.

• mask – Optional mask, with same size as model.

moments.Inference.Anscombe_Poisson_residual(model, data, mask=None)
Return the Anscombe Poisson residuals between model and data.

mask sets the level in model below which the returned residual array is masked. This excludes very small values
where the residuals are not normal. 1e-2 seems to be a good default for the NIEHS human data. (model = 1e-2,
data = 0, yields a residual of ~1.5.)

Residuals defined in this manner are more normally distributed than the linear residuals when the mean is small.
See this reference below for justification: Pierce DA and Schafer DW, “Residuals in generalized linear models”
Journal of the American Statistical Association, 81(396)977-986 (1986).

Note that I tried implementing the “adjusted deviance” residuals, but they always looked very biased for the cases
where the data was 0.

Parameters

• model – The model Spectrum object.

• data – The data Spectrum object, with same size as model.

• mask – Optional mask, with same size as model.

moments.Inference.optimize_log(p0, data, model_func, lower_bound=None, upper_bound=None, verbose=0,
flush_delay=0.5, epsilon=0.001, gtol=1e-05, multinom=True,
maxiter=None, full_output=False, func_args=[], func_kwargs={},
fixed_params=None, ll_scale=1, output_file=None)

Optimize log(params) to fit model to data using the BFGS method. This optimization method works well when
we start reasonably close to the optimum.

Because this works in log(params), it cannot explore values of params < 0. However, it should perform well
when parameters range over different orders of magnitude.

Parameters

• p0 – Initial parameters.

• data – Data SFS.

15.4. Inference functions 153

moments, Release 1.1.0

• model_func – Function to evaluate model spectrum. Should take arguments
model_func(params, (n1,n2...)).

• lower_bound – Lower bound on parameter values. If not None, must be of same length as
p0.

• upper_bound – Upper bound on parameter values. If not None, must be of same length as
p0.

• verbose – If > 0, print optimization status every verbose steps.

• output_file – Stream verbose output into this filename. If None, stream to standard out.

• flush_delay – Standard output will be flushed once every <flush_delay> minutes. This is
useful to avoid overloading I/O on clusters.

• epsilon – Step-size to use for finite-difference derivatives.

• gtol – Convergence criterion for optimization. For more info, see
help(scipy.optimize.fmin_bfgs)

• multinom – If True, do a multinomial fit where model is optimially scaled to data at each
step. If False, assume theta is a parameter and do no scaling.

• maxiter – Maximum iterations to run for.

• full_output – If True, return full outputs as in described in help(scipy.optimize.fmin_bfgs)

• func_args – Additional arguments to model_func. It is assumed that model_func’s first
argument is an array of parameters to optimize, that its second argument is an array of sample
sizes for the sfs, and that its last argument is the list of grid points to use in evaluation. Using
func_args. For example, you could define your model function as def func((p1,p2),
ns, f1, f2): If you wanted to fix f1=0.1 and f2=0.2 in the optimization, you would
pass func_args = [0.1,0.2] (and ignore the fixed_params argument).

• func_kwargs – Additional keyword arguments to model_func.

• fixed_params – If not None, should be a list used to fix model parameters at particu-
lar values. For example, if the model parameters are (nu1,nu2,T,m), then fixed_params =
[0.5,None,None,2] ll hold nu1=0.5 and m=2. The optimizer will only change T and m. Note
that the bounds lists must include all parameters. Optimization will fail if the fixed values
lie outside their bounds. A full-length p0 should be passed in; values corresponding to fixed
parameters are ignored. For example, suppose your model function is def func((p1,f1,
p2,f2), ns): ... If you wanted to fix f1=0.1 and f2=0.2 in the optimization, you would
pass fixed_params = [None,0.1,None,0.2] (and ignore the func_args argument).

• ll_scale – The bfgs algorithm may fail if your initial log-likelihood is too large. (This
appears to be a flaw in the scipy implementation.) To overcome this, pass ll_scale > 1, which
will simply reduce the magnitude of the log-likelihood. Once in a region of reasonable
likelihood, you’ll probably want to re-optimize with ll_scale=1.

moments.Inference.optimize_log_fmin(p0, data, model_func, lower_bound=None, upper_bound=None,
verbose=0, flush_delay=0.5, multinom=True, maxiter=None,
maxfun=None, full_output=False, func_args=[], func_kwargs={},
fixed_params=None, output_file=None)

Optimize log(params) to fit model to data using Nelder-Mead. This optimization method may work better than
BFGS when far from a minimum. It is much slower, but more robust, because it doesn’t use gradient information.

Because this works in log(params), it cannot explore values of params < 0. It should also perform better when
parameters range over large scales.

Parameters

154 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

• p0 – Initial parameters.

• data – Spectrum with data.

• model_function – Function to evaluate model spectrum. Should take arguments (params,
(n1,n2. . .))

• lower_bound – Lower bound on parameter values. If not None, must be of same length as
p0. A parameter can be declared unbound by assigning a bound of None.

• upper_bound – Upper bound on parameter values. If not None, must be of same length as
p0. A parameter can be declared unbound by assigning a bound of None.

• verbose – If True, print optimization status every <verbose> steps.

• output_file – Stream verbose output into this filename. If None, stream to standard out.

• flush_delay – Standard output will be flushed once every <flush_delay> minutes. This is
useful to avoid overloading I/O on clusters.

• multinom – If True, do a multinomial fit where model is optimially scaled to data at each
step. If False, assume theta is a parameter and do no scaling.

• maxiter – Maximum number of iterations to run optimization.

• maxfun – Maximum number of objective function calls to perform.

• full_output – If True, return full outputs as in described in help(scipy.optimize.fmin_bfgs)

• func_args – Additional arguments to model_func. It is assumed that model_func’s first
argument is an array of parameters to optimize, that its second argument is an array of sample
sizes for the sfs, and that its last argument is the list of grid points to use in evaluation.

• func_kwargs – Additional keyword arguments to model_func.

• fixed_params – If not None, should be a list used to fix model parameters at particu-
lar values. For example, if the model parameters are (nu1,nu2,T,m), then fixed_params =
[0.5,None,None,2] will hold nu1=0.5 and m=2. The optimizer will only change T and m.
Note that the bounds lists must include all parameters. Optimization will fail if the fixed
values lie outside their bounds. A full-length p0 should be passed in; values corresponding
to fixed parameters are ignored.

moments.Inference.optimize_log_powell(p0, data, model_func, lower_bound=None, upper_bound=None,
verbose=0, flush_delay=0.5, multinom=True, maxiter=None,
full_output=False, func_args=[], func_kwargs={},
fixed_params=None, output_file=None)

Optimize log(params) to fit model to data using Powell’s conjugate direction method.

This method works without calculating any derivatives, and optimizes along one direction at a time. May be
useful as an initial search for an approximate solution, followed by further optimization using a gradient optimizer.

Because this works in log(params), it cannot explore values of params < 0.

Parameters

• p0 – Initial parameters.

• data – Spectrum with data.

• model_function – Function to evaluate model spectrum. Should take arguments (params,
(n1,n2. . .))

• lower_bound – Lower bound on parameter values. If not None, must be of same length as
p0. A parameter can be declared unbound by assigning a bound of None.

15.4. Inference functions 155

moments, Release 1.1.0

• upper_bound – Upper bound on parameter values. If not None, must be of same length as
p0. A parameter can be declared unbound by assigning a bound of None.

• verbose – If True, print optimization status every <verbose> steps. output_file: Stream
verbose output into this filename. If None, stream to standard out.

• flush_delay – Standard output will be flushed once every <flush_delay> minutes. This is
useful to avoid overloading I/O on clusters. multinom: If True, do a multinomial fit where
model is optimially scaled to data at each step. If False, assume theta is a parameter and do
no scaling.

• maxiter – Maximum iterations to run for.

• full_output – If True, return full outputs as in described in help(scipy.optimize.fmin_bfgs)

• func_args – Additional arguments to model_func. It is assumed that model_func’s first
argument is an array of parameters to optimize, that its second argument is an array of sample
sizes for the sfs, and that its last argument is the list of grid points to use in evaluation.

• func_kwargs – Additional keyword arguments to model_func.

• fixed_params – If not None, should be a list used to fix model parameters at particu-
lar values. For example, if the model parameters are (nu1,nu2,T,m), then fixed_params =
[0.5,None,None,2] will hold nu1=0.5 and m=2. The optimizer will only change T and m.
Note that the bounds lists must include all parameters. Optimization will fail if the fixed
values lie outside their bounds. A full-length p0 should be passed in; values corresponding
to fixed parameters are ignored. (See help(moments.Inference.optimize_log for examples of
func_args and fixed_params usage.)

moments.Inference.optimize_log_lbfgsb(p0, data, model_func, lower_bound=None, upper_bound=None,
verbose=0, flush_delay=0.5, epsilon=0.001, pgtol=1e-05,
multinom=True, maxiter=100000.0, full_output=False,
func_args=[], func_kwargs={}, fixed_params=None, ll_scale=1,
output_file=None)

Optimize log(params) to fit model to data using the L-BFGS-B method.

This optimization method works well when we start reasonably close to the optimum. It is best at burrowing
down a single minimum. This method is better than optimize_log if the optimum lies at one or more of the
parameter bounds. However, if your optimum is not on the bounds, this method may be much slower.

Because this works in log(params), it cannot explore values of params < 0. It should also perform better when
parameters range over scales.

The L-BFGS-B method was developed by Ciyou Zhu, Richard Byrd, and Jorge Nocedal. The algorithm is
described in:

• R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization,
(1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208.

• C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large
scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num.
4, pp. 550-560.

Parameters

• p0 – Initial parameters.

• data – Spectrum with data.

• model_function – Function to evaluate model spectrum. Should take arguments (params,
(n1,n2. . .))

156 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

• lower_bound – Lower bound on parameter values. If not None, must be of same length as
p0. A parameter can be declared unbound by assigning a bound of None.

• upper_bound – Upper bound on parameter values. If not None, must be of same length as
p0. A parameter can be declared unbound by assigning a bound of None.

• verbose – If > 0, print optimization status every <verbose> steps.

• output_file – Stream verbose output into this filename. If None, stream to standard out.

• flush_delay – Standard output will be flushed once every <flush_delay> minutes. This is
useful to avoid overloading I/O on clusters.

• epsilon – Step-size to use for finite-difference derivatives.

• pgtol – Convergence criterion for optimization. For more info, see
help(scipy.optimize.fmin_l_bfgs_b)

• multinom – If True, do a multinomial fit where model is optimially scaled to data at each
step. If False, assume theta is a parameter and do no scaling.

• maxiter – Maximum algorithm iterations to run.

• full_output – If True, return full outputs as in described in help(scipy.optimize.fmin_bfgs)

• func_args – Additional arguments to model_func. It is assumed that model_func’s first
argument is an array of parameters to optimize, that its second argument is an array of sample
sizes for the sfs, and that its last argument is the list of grid points to use in evaluation.

• func_kwargs – Additional keyword arguments to model_func.

• fixed_params – If not None, should be a list used to fix model parameters at particu-
lar values. For example, if the model parameters are (nu1,nu2,T,m), then fixed_params =
[0.5,None,None,2] will hold nu1=0.5 and m=2. The optimizer will only change T and m.
Note that the bounds lists must include all parameters. Optimization will fail if the fixed
values lie outside their bounds. A full-length p0 should be passed in; values corresponding
to fixed parameters are ignored.

• ll_scale – The bfgs algorithm may fail if your initial log-likelihood is too large. (This
appears to be a flaw in the scipy implementation.) To overcome this, pass ll_scale > 1, which
will simply reduce the magnitude of the log-likelihood. Once in a region of reasonable
likelihood, you’ll probably want to re-optimize with ll_scale=1.

15.5 Uncertainty functions

Parameter uncertainties and likelihood ratio tests using Godambe information.

moments.Godambe.FIM_uncert(func_ex, p0, data, log=False, multinom=True, eps=0.01)
Parameter uncertainties from Fisher Information Matrix. Returns standard deviations of parameter values.

Parameters

• func_ex (demographic model) – Model function

• p0 (list-like) – Best-fit parameters for func_ex

• data (spectrum object) – Original data frequency spectrum

• log (bool) – If True, assume log-normal distribution of parameters. Returned values are
then the standard deviations of the logs of the parameter values, which can be interpreted as
relative parameter uncertainties.

15.5. Uncertainty functions 157

moments, Release 1.1.0

• multinom (bool) – If True, assume model is defined without an explicit parameter for theta.
Because uncertainty in theta must be accounted for to get correct uncertainties for other
parameters, this function will automatically consider theta if multinom=True. In that case,
the final entry of the returned uncertainties will correspond to theta.

• eps (float) – Fractional stepsize to use when taking finite-difference derivatives

moments.Godambe.GIM_uncert(func_ex, all_boot, p0, data, log=False, multinom=True, eps=0.01,
return_GIM=False)

Parameter uncertainties from Godambe Information Matrix (GIM). Returns standard deviations of parameter val-
ues. Bootstrap data is typically generated by splitting the genome into N chunks and sampling with replacement
from those chunks N times.

Parameters

• func_ex (demographic model) – Model function

• all_boot (list of spectra) – List of bootstrap frequency spectra

• p0 (list-like) – Best-fit parameters for func_ex

• data (spectrum object) – Original data frequency spectrum

• log (bool) – If True, assume log-normal distribution of parameters. Returned values are
then the standard deviations of the logs of the parameter values, which can be interpreted as
relative parameter uncertainties.

• multinom (bool) – If True, assume model is defined without an explicit parameter for theta.
Because uncertainty in theta must be accounted for to get correct uncertainties for other
parameters, this function will automatically consider theta if multinom=True. In that case,
the final entry of the returned uncertainties will correspond to theta.

• eps (float) – Fractional stepsize to use when taking finite-difference derivatives

• return_GIM – If True, also return the full GIM.

moments.Godambe.LRT_adjust(func_ex, all_boot, p0, data, nested_indices, multinom=True, eps=0.01)
First-order moment matching adjustment factor for likelihood ratio test.

Parameters

• func_ex (demographic model) – Model function for complex model

• all_boot (list of spectra) – List of bootstrap frequency spectra

• p0 (list-like) – Best-fit parameters for the simple model, with nested parameter explicity
defined. Although equal to values for simple model, should be in a list form that can be taken
in by the complex model you’d like to evaluate.

• data (spectrum object) – Original data frequency spectrum

• nested_indices (list of ints) – List of positions of nested parameters in complex
model parameter list

• multinom (bool) – If True, assume model is defined without an explicit parameter for theta.
Because uncertainty in theta must be accounted for to get correct uncertainties for other
parameters, this function will automatically consider theta if multinom=True.

• eps (float) – Fractional stepsize to use when taking finite-difference derivatives

158 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

15.6 Plotting features

15.6.1 Single-population plotting

moments.Plotting.plot_1d_comp_Poisson(model, data, fig_num=None, residual='Anscombe',
plot_masked=False, out=None, show=True, labels=['Model',
'Data'])

Poisson comparison between 1d model and data.

Parameters

• model – 1-dimensional model SFS

• data – 1-dimensional data SFS

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• plot_masked – Additionally plots (in open circles) results for points in the model or data
that were masked.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

• labels – A list of strings of length two, labels for the first and second input frequency
spectra. Defaults to “Model” and “Data”.

moments.Plotting.plot_1d_comp_multinom(model, data, fig_num=None, residual='Anscombe',
plot_masked=False, out=None, show=True, labels=['Model',
'Data'])

Multinomial comparison between 1d model and data.

Parameters

• model – 1-dimensional model SFS

• data – 1-dimensional data SFS

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• plot_masked – Additionally plots (in open circles) results for points in the model or data
that were masked.

• out – Output filename to save figure, if given.

• show – If True, displays figure. Set to False to supress.

moments.Plotting.plot_1d_fs(fs, fig_num=None, show=True, ax=None, out=None, ms=3, lw=1)
Plot a 1-dimensional frequency spectrum.

Note that all the plotting is done with pylab. To see additional pylab methods: “import pylab; help(pylab)”.
Pylab’s many functions are documented at http://matplotlib.sourceforge.net/contents.html

Parameters

15.6. Plotting features 159

http://matplotlib.sourceforge.net/contents.html

moments, Release 1.1.0

• fs – A single-population Spectrum

• fig_num – If used, clear and use figure fig_num for display. If None, a new figure window
is created.

• show – If True, execute pylab.show command to make sure plot displays.

• ax – If None, uses new or specified figure. Otherwise plots in axes object that is given after
clearing.

• out – If file name is given, saves before showing.

15.6.2 Multi-population plotting

moments.Plotting.plot_2d_comp_Poisson(model, data, vmin=None, vmax=None, resid_range=None,
fig_num=None, pop_ids=None, residual='Anscombe', adjust=True,
out=None, show=True)

Poisson comparison between 2d model and data.

Parameters

• model – 2-dimensional model SFS

• data – 2-dimensional data SFS

• vmin – Minimum value plotted.

• vmax – Maximum value plotted.

• resid_range – Residual plot saturates at +- resid_range.

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• adjust – Should method use automatic ‘subplots_adjust’? For advanced manipulation of
plots, it may be useful to make this False.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_2d_comp_multinom(model, data, vmin=None, vmax=None, resid_range=None,
fig_num=None, pop_ids=None, residual='Anscombe',
adjust=True, out=None, show=True)

Multinomial comparison between 2d model and data.

Parameters

• model – 2-dimensional model SFS

• data – 2-dimensional data SFS

• vmin – Minimum value plotted.

• vmax – Maximum value plotted.

• resid_range – Residual plot saturates at +- resid_range.

160 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• adjust – Should method use automatic ‘subplots_adjust’? For advanced manipulation of
plots, it may be useful to make this False.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_2d_resid(resid, resid_range=None, ax=None, pop_ids=None, extend='neither',
colorbar=True, out=None, show=True)

Linear heatmap of 2d residual array.

Parameters

• sfs – Residual array to plot.

• resid_range – Values > resid range or < resid_range saturate the color spectrum.

• ax – Axes object to plot into. If None, the result of pylab.gca() is used.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• extend – Whether the colorbar should have ‘extension’ arrows. See help(pylab.colorbar)
for more details.

• colorbar – Should we plot a colorbar?

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_3d_comp_Poisson(model, data, vmin=None, vmax=None, resid_range=None,
fig_num=None, pop_ids=None, residual='Anscombe', adjust=True,
out=None, show=True)

Poisson comparison between 3d model and data.

Parameters

• model – 3-dimensional model SFS

• data – 3-dimensional data SFS

• vmin – Minimum value plotted.

• vmax – Maximum value plotted.

• resid_range – Residual plot saturates at +- resid_range.

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• adjust – Should method use automatic ‘subplots_adjust’? For advanced manipulation of
plots, it may be useful to make this False.

• out – Output filename to save figure, if given.

15.6. Plotting features 161

moments, Release 1.1.0

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_3d_comp_multinom(model, data, vmin=None, vmax=None, resid_range=None,
fig_num=None, pop_ids=None, residual='Anscombe',
adjust=True, out=None, show=True)

Multinomial comparison between 3d model and data.

Parameters

• model – 3-dimensional model SFS

• data – 3-dimensional data SFS

• vmin – Minimum value plotted.

• vmax – Maximum value plotted.

• resid_range – Residual plot saturates at +- resid_range.

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• adjust – Should method use automatic ‘subplots_adjust’? For advanced manipulation of
plots, it may be useful to make this False.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_3d_spectrum(fs, fignum=None, vmin=None, vmax=None, pop_ids=None, out=None,
show=True)

Logarithmic heatmap of single 3d FS.

Note that this method is slow, because it relies on matplotlib’s software rendering. For faster and better looking
plots, use plot_3d_spectrum_mayavi.

Parameters

• fs – FS to plot

• vmin – Values in fs below vmin are masked in plot.

• vmax – Values in fs above vmax saturate the color spectrum.

• fignum – Figure number to plot into. If None, a new figure will be created.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_4d_comp_Poisson(model, data, vmin=None, vmax=None, resid_range=None,
fig_num=None, pop_ids=None, residual='Anscombe', adjust=True,
out=None, show=True)

Poisson comparison between 4d model and data.

Parameters

• model – 4-dimensional model SFS

162 Chapter 15. API for site frequency spectra

moments, Release 1.1.0

• data – 4-dimensional data SFS

• vmin – Minimum value plotted.

• vmax – Maximum value plotted.

• resid_range – Residual plot saturates at +- resid_range.

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• adjust – Should method use automatic ‘subplots_adjust’? For advanced manipulation of
plots, it may be useful to make this False.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_4d_comp_multinom(model, data, vmin=None, vmax=None, resid_range=None,
fig_num=None, pop_ids=None, residual='Anscombe',
adjust=True, out=None, show=True)

Multinomial comparison between 4d model and data.

Parameters

• model – 4-dimensional model SFS

• data – 4-dimensional data SFS

• vmin – Minimum value plotted.

• vmax – Maximum value plotted.

• resid_range – Residual plot saturates at +- resid_range.

• fig_num – Clear and use figure fig_num for display. If None, an new figure window is
created.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• residual – ‘Anscombe’ for Anscombe residuals, which are more normally distributed for
Poisson sampling. ‘linear’ for the linear residuals, which can be less biased.

• adjust – Should method use automatic ‘subplots_adjust’? For advanced manipulation of
plots, it may be useful to make this False.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

moments.Plotting.plot_single_2d_sfs(sfs, vmin=None, vmax=None, ax=None, pop_ids=None,
extend='neither', colorbar=True,
cmap=<matplotlib.colors.LinearSegmentedColormap object>,
out=None, show=True)

Heatmap of single 2d SFS.

If vmax is greater than a factor of 10, plot on log scale.

Returns colorbar that is created.

Parameters

15.6. Plotting features 163

moments, Release 1.1.0

• sfs – SFS to plot

• vmin – Values in sfs below vmin are masked in plot.

• vmax – Values in sfs above vmax saturate the color spectrum.

• ax – Axes object to plot into. If None, the result of pylab.gca() is used.

• pop_ids – If not None, override pop_ids stored in Spectrum.

• extend – Whether the colorbar should have ‘extension’ arrows. See help(pylab.colorbar)
for more details.

• colorbar – Should we plot a colorbar?

• cmap – Pylab colormap to use for plotting.

• out – Output filename to save figure, if given.

• show – If True, execute pylab.show command to make sure plot displays.

164 Chapter 15. API for site frequency spectra

CHAPTER

SIXTEEN

API FOR LINKAGE DISEQUILIBRIUM

16.1 LD statistics class and function

class moments.LD.LDstats(data, num_pops=None, pop_ids=None)
Represents linkage disequilibrium statistics as a list of arrays, where each entry in the list is an array of statistics
for a corresponding recombination rate. The final entry in the list is always the heterozygosity statistics. Thus,
if we have an LDstats object for 3 recombination rate values, the list will have length 4.

LDstats are represented as a list of statistics over two locus pairs for a given recombination distance.

Parameters

• data (list of arrays) – A list of LD and heterozygosity stats.

• num_pops (int) – Number of populations. For one population, higher order statistics may
be computed.

• pop_ids (list of strings, optional) – Population IDs in order that statistics are rep-
resented here.

H(pops=None)
Returns heterozygosity statistics for the populations given.

Parameters
pops (list of ints, optional) – The indexes of populations to return stats for.

LD(pops=None)
Returns LD stats for populations given (if None, returns all).

Parameters
pops (list of ints, optional) – The indexes of populations to return stats for.

admix(pop0, pop1, f, new_id='Adm')
Admixture between pop0 and pop1, given by indexes. f is the fraction contributed by pop0, so pop1 con-
tributes 1-f. If new_id is not specified, the admixed population’s name is ‘Adm’. Otherwise, we can set it
with new_id=new_pop_id.

Parameters

• pop0 (int) – First population to admix.

• pop1 (int) – Second population to admix.

• f (float) – The fraction of ancestry contributed by pop0, so pop1 contributes 1 - f.

• new_id (str, optional) – The name of the admixed population.

165

moments, Release 1.1.0

f2(X, Y)
Returns 𝑓2(𝑋,𝑌) = (𝑋 − 𝑌)2.

X, and Y can be specified as population ID strings, or as indexes (but these cannot be mixed).

Parameters

• X – One of the populations, as index or population ID.

• Y – The other population, as index or population ID.

f3(X, Y, Z)
Returns 𝑓3(𝑋;𝑌,𝑍) = (𝑋−𝑌)(𝑋−𝑍). A significantly negative 𝑓3 of this form suggests that population
X is the result of admixture between ancient populations related to Y and Z. A positive value suggests that
X is an outgroup to Y and Z.

X, Y, and Z can be specified as population ID strings, or as indexes (but these cannot be mixed).

Parameters

• X – The “test” population, as index or population ID.

• Y – The first reference population, as index or population ID.

• Z – The second reference population, as index or population ID.

f4(X, Y, Z, W)

Returns 𝑓4(𝑋,𝑌 ;𝑍,𝑊) = (𝑋 − 𝑌)(𝑍 −𝑊).

X, Y, and Z can be specified as population ID strings, or as indexes (but these cannot be mixed).

Parameters

• X – The “test” population, as index or population ID.

• Y – The first reference population, as index or population ID.

• Z – The second reference population, as index or population ID.

• W –

static from_demes(g, sampled_demes, sample_times=None, rho=None, theta=0.001, r=None, u=None,
Ne=None)

Takes a deme graph and computes the LD stats. demes is a package for specifying demographic models
in a user-friendly, human-readable YAML format. This function automatically parses the demographic
description and returns a LD for the specified populations and recombination and mutation rates.

Parameters

• g (demes.DemeGraph) – A demes DemeGraph from which to compute the LD.

• sampled_demes (list of strings) – A list of deme IDs to take samples from. We can
repeat demes, as long as the sampling of repeated deme IDs occurs at distinct times.

• sample_times (list of floats, optional) – If None, assumes all sampling oc-
curs at the end of the existence of the sampled deme. If there are ancient samples,
sample_times must be a list of same length as sampled_demes, giving the sampling
times for each sampled deme. Sampling times are given in time units of the original deme
graph, so might not necessarily be generations (e.g. if g.time_units is years)

• rho – The population-size scaled recombination rate(s). Can be None, a non-negative float,
or a list of values. Cannot be used with Ne.

• theta – The population-size scaled mutation rate. Cannot be used with Ne.

166 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

• r – The raw recombination rate. Can be None, a non-negative float, or a list of values.
Must be used with Ne.

• u – The raw per-base mutation rate. Must be used with Ne, in which case theta is set to 4
* Ne * u.

• Ne (float, optional) – The reference population size. If none is given, we use the
initial size of the root deme. For use with r and u, to compute rho and theta. If rho
and/or theta are given, we do not pass Ne.

Returns
A moments.LD LD statistics object, with number of populations equal to the length of
sampled_demes.

Return type
moments.LD.LDstats

static from_file(fid, return_statistics=False, return_comments=False)
Read LD statistics from file.

Parameters

• fid (str) – The file name to read from or an open file object.

• return_statistics (bool, optional) – If true, returns statistics writen to file.

• return_comments (bool, optional) – If true, the return value is (y, comments), where
comments is a list of strings containing the comments from the file (without #’s).

integrate(nu, tf, dt=0.001, rho=None, theta=0.001, m=None, selfing=None, selfing_rate=None,
frozen=None)

Integrates the LD statistics forward in time. When integrating LD statistics for a list of recombination rates
and mutation rate, they must be passed as keywork arguments to this function. We can integrate either
single-population LD statistics up to order 10, or multi-population LD statistics but only for order 2 (which
includes 𝐷2, 𝐷𝑧, and 𝜋2).

Parameters

• nu (list or function) – The relative population size, may be a function of time, given
as a list [nu1, nu2, . . .]

• tf (float) – Total time to integrate

• dt (float) – Integration timestep

• rho (float or list of floats) – Can be a single recombination rate or list of recom-
bination rates (in which case we are integrating a list of LD stats for each rate)

• theta – The per base population-scaled mutation rate (4N*mu) if we pass [theta1, theta2],
differing mutation rates at left and right locus, implemented in the ISM=True model

• m (array) – The migration matrix (num_pops x num_pops, storing m_ij migration rates
where m_ij is probability that a lineage in i had parent in j m_ii is unused, and found by
summing off diag elements in the ith row

• selfing (list of floats) – A list of selfing probabilities, same length as nu.

• selfing_rate (list of floats) – Alias for selfing.

• frozen (list of bools) – A list of True and False same length as nu. True implies that
a lineage is frozen (as in ancient samples). False integrates as normal.

16.1. LD statistics class and function 167

moments, Release 1.1.0

marginalize(pops)
Marginalize over the LDstats, removing moments for given populations.

Parameters
pops (int or list of ints) – The index or list of indexes of populations to marginalize.

merge(pop0, pop1, f, new_id='Merged')
Merger of populations pop0 and pop1, with fraction f from pop0 and 1-f from pop1. Places new population
at the end, then marginalizes pop0 and pop1. To admix two populations and keep one or both, use pulse
migrate or admix, respectively.

Parameters

• pop0 (int) – First population to merge.

• pop1 (int) – Second population to merge.

• f (float) – The fraction of ancestry contributed by pop0, so pop1 contributes 1 - f.

• new_id (str, optional) – The name of the merged population.

names()

Returns the set of LD and heterozygosity statistics names for the number of populations represented by the
LDstats.

Note that this will always return the full set of statistics,

pulse_migrate(pop0, pop1, f)
Pulse migration/admixure event from pop0 to pop1, with fraction f replacement. We use the admix function
above. We want to keep the original population names the same, if they are given in the LDstats object, so
we use new_pop=self.pop_ids[pop1].

We admix pop0 and pop1 with fraction f and 1-f, then swap the new admixed population with pop1, then
marginalize the original pop1.

Parameters

• pop0 (int) – The index of the source population.

• pop1 (int) – The index of the target population.

• f (float) – The fraction of ancestry contributed by the source population.

split(pop_to_split, new_ids=None)
Splits the population given into two child populations. One child population keeps the same index and the
second child population is placed at the end of the list of present populations. If new_ids is given, we can
set the population IDs of the child populations, but only if the input LDstats have population IDs available.

Parameters

• pop_to_split (int) – The index of the population to split.

• new_ids (list of strings, optional) – List of child population names, of length
two.

static steady_state(nus, m=None, rho=None, theta=0.001, selfing_rate=None, pop_ids=None)
Computes the steady state solution for one or two populations. The number of populations is determined
by the length of nus, which is a list with relative population sizes (often, these will be set to 1, meaning
sizes are equal to some reference or ancestral population size).

The steady state can only be found for one- and two-population scenarios. If two populations are desired,
we must provide m, a 2-by-2 migration matrix, and there must be at least one nonzero migration rate. This
corresponds to an island model with asymmetric migration and potentially unequal population sizes.

168 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

Parameters

• nus (list of numbers) – The relative population sizes, with one or two entries, corre-
sponding to a steady state solution with one or two populations, resp.

• m (array-like) – A migration matrix, only provided when the length of nus is 2.

• rho – The population-size scaled recombination rate(s). Can be None, a non-negative float,
or a list of values.

• theta (float) – The population-size scaled mutation rate

• selfing_rate (number or list of numbers) – Self-fertilization rate(s), given as a
number (for a single population, or list of numbers (for two populations). Selfing rates must
be between 0 and 1.

• pop_ids (list of strings) – The population IDs.

Returns
A moments.LD LD statistics object.

Return type
moments.LD.LDstats

swap_pops(pop0, pop1)
Swaps pop0 and pop1 in the order of the population in the LDstats.

Parameters

• pop0 (int) – The index of the first population to swap.

• pop1 (int) – The index of the second population to swap.

to_file(fid, precision=16, statistics='ALL', comment_lines=[])
Write LD statistics to file.

The file format is:

• # Any number of comment lines beginning with a ‘#’

• A single line containing an integer giving the number of populations.

• On the same line, optional, the names of those populations. If names are given, there needs to be the
same number of pop_ids as the integer number of populations. For example, the line could be ‘3 YRI
CEU CHB’.

• A single line giving the names of the LD statistics, in the order they appear for each recombination
rate distance or bin. Optionally, this line could read ALL, indicating that every statistic in the basis is
given, and in the ‘correct’ order.

• A single line giving the names of the heterozygosity statistics, in the order they appear in the final row
of data. Optionally, this line could read ALL.

• A line giving the number of recombination rate bins/distances we have data for (so we know how many
to read)

• One line for each row of LD statistics.

• A single line for the heterozygosity statistics.

Parameters

• fid (str) – The file name to write to or an open file object.

16.1. LD statistics class and function 169

moments, Release 1.1.0

• precision (int) – The precision with which to write out entries of the LD stats. (They
are formated via %.<p>g, where <p> is the precision.)

• statistics (list of list of strings) – Defaults to ‘ALL’, meaning all statistics
are given in the LDstats object. Otherwise, list of two lists, first giving present LD stats,
and the second giving present het stats.

• comment_lines (list of srtings) – List of strings to be used as comment lines in the
header of the output file. I use comment lines mainly to record the recombination bins or
distances given in the LDstats (something like “‘edges = ‘ + str(r_edges)”.

16.2 Demographic functions

moments.LD.Demographics1D.bottlegrowth(params, order=2, rho=None, theta=0.001, pop_ids=None)
Exponential growth (or decay) model after size change.

Parameters

• params (list) – The relative initial and final sizes of the final epoch and its integration time
in genetic units: (nuB, nuF, T).

• order (int) – The maximum order of the LD statistics. Defaults to 2.

• rho (float or list of floats, optional) – Population-scaled recombination rate
(4Nr), given as scalar or list of rhos.

• theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

• pop_ids (lits of str, optional) – List of population IDs of length 1.

moments.LD.Demographics1D.growth(params, order=2, rho=None, theta=0.001, pop_ids=None)
Exponential growth (or decay) model.

Parameters

• params (list) – The relative final size and integration time of recent epoch, in genetic units:
(nuF, T)

• order (int) – The maximum order of the LD statistics. Defaults to 2.

• rho (float or list of floats, optional) – Population-scaled recombination rate
(4Nr), given as scalar or list of rhos.

• theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

• pop_ids (lits of str, optional) – List of population IDs of length 1.

moments.LD.Demographics1D.snm(params=None, order=2, rho=None, theta=0.001, pop_ids=None)
Equilibrium neutral model. Does not take demographic parameters.

Parameters

• params – Unused.

• order (int) – The maximum order of the LD statistics. Defaults to 2.

• rho (float or list of floats, optional) – Population-scaled recombination rate
(4Nr), given as scalar or list of rhos.

• theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

• pop_ids (lits of str, optional) – List of population IDs of length 1.

170 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

moments.LD.Demographics1D.three_epoch(params, order=2, rho=None, theta=0.001, pop_ids=None)
Three epoch model with constant sized epochs.

Parameters

• params (list) – The relative sizes and integration times of recent epochs, in genetic units:
(nu1, nu2, T1, T2).

• order (int) – The maximum order of the LD statistics. Defaults to 2.

• rho (float or list of floats, optional) – Population-scaled recombination rate
(4Nr), given as scalar or list of rhos.

• theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

• pop_ids (lits of str, optional) – List of population IDs of length 1.

moments.LD.Demographics1D.two_epoch(params, order=2, rho=None, theta=0.001, pop_ids=None)
Two epoch model with a single size change and constant sized epochs.

Parameters

• params (list) – The relative size and integration time of recent epoch, in genetic units: (nu,
T).

• order (int) – The maximum order of the LD statistics. Defaults to 2.

• rho (float or list of floats, optional) – Population-scaled recombination rate
(4Nr), given as scalar or list of rhos.

• theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

• pop_ids (lits of str, optional) – List of population IDs of length 1.

moments.LD.Demographics2D.snm(params=None, rho=None, theta=0.001, pop_ids=None)
Equilibrium neutral model. Neutral steady state followed by split in the immediate past.

Parameters

• params – Unused.

• rho (float or list of floats, optional) – Population-scaled recombination rate
(4Nr), given as scalar or list of rhos.

• theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

• pop_ids (lits of str, optional) – List of population IDs of length 2.

moments.LD.Demographics2D.split_mig(params, rho=None, theta=0.001, pop_ids=None)
Split into two populations of specifed size, which then have their own relative constant sizes and symmetric
migration between populations.

• nu1: Size of population 1 after split.

• nu2: Size of population 2 after split.

• T: Time in the past of split (in units of 2*Na generations)

• m: Migration rate between populations (2*Na*m)

Parameters

• params – The input parameters: (nu1, nu2, T, m)

• rho (float or list of floats, optional) – Population-scaled recombination rate
(4Nr), given as scalar or list of rhos.

16.2. Demographic functions 171

moments, Release 1.1.0

• theta (float) – Population-scaled mutation rate (4Nu). Defaults to 0.001.

• pop_ids (lits of str, optional) – List of population IDs of length 1.

Three-population demographic models.

moments.LD.Demographics3D.out_of_Africa(params, rho=None, theta=0.001, pop_ids=['YRI', 'CEU',
'CHB'])

The Gutenkunst et al (2009) out-of-Africa that has been reinferred a number of times.

Parameters

• params – List of parameters, in the order (nuA, TA, nuB, TB, nuEu0, nuEuF, nuAs0, nuAsF,
TF, mAfB, mAfEu, mAfAs, mEuAs).

• rho – Recombination rate or list of recombination rates (population-size scaled).

• theta – Population-size scaled mutation rate.

• pop_ids – List of population IDs.

16.3 Utility functions

moments.LD.Util.het_names(num_pops)
Returns the heterozygosity statistic representation names.

Parameters
num_pops (int) – Number of populations.

moments.LD.Util.ld_names(num_pops)
Returns the LD statistic representation names.

Parameters
num_pops (int) – Number of populations.

moments.LD.Util.map_moment(mom)

There are repeated moments with equal expectations, so we collapse them into the same moment.

Parameters
mom (str) – The moment to map to its “canonical” name.

moments.LD.Util.moment_names(num_pops)
Returns a tuple of length two with LD and heterozygosity moment names.

Parameters
num_pops (int) – Number of populations

moments.LD.Util.perturb_params(params, fold=1, lower_bound=None, upper_bound=None)
Generate a perturbed set of parameters. Each element of params is randomly perturbed by the given factor of 2
up or down.

Parameters

• params (list) – A list of input parameters.

• fold (float) – Number of factors of 2 to perturb by.

• lower_bound (list) – If not None, the resulting parameter set is adjusted to have all value
greater than lower_bound. Must have equal length to params.

172 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

• upper_bound (list) – If not None, the resulting parameter set is adjusted to have all value
less than upper_bound. Must have equal length to params.

moments.LD.Util.rescale_params(params, types, Ne=None, gens=1, uncerts=None, time_offset=0)
Rescale parameters to physical units, so that times are in generations or years, sizes in effective instead of relative
sizes, and migration probabilities in per-generation units.

For generation times of events to be correctly rescaled, times in the parameters list must be specified so that
earlier epochs are earlier in the list, because we return rescaled cumulative times. All time parameters must refer
to consecutive epochs. Epochs need not start at contemporary time, and we can specify the time offset using
time_offset.

If uncertainties are not given (uncerts = None), the return value is an array of rescaled parameters. If uncertainties
are given, the return value has length two: the first entry is an array of rescaled parameters, and the second entry
is an array of rescaled uncertainties.

Parameters

• params (list) – List of parameters.

• types (list) – List of parameter types. Times are given by “T”, sizes by “nu”, effective
size by “Ne”, migration rates by “m”, and fractions by “x” or “f”.

• Ne (float) – The effective population size, typically as the last entry in params.

• gens (float) – The generation time.

• uncerts (list) – List of uncertainties, same length as params.

• time_offset (int or float) – The amount of time added to each rescaled time point.
This lets us have consecutive epochs that stop short of time 0 (final sampling time).

16.4 Parsing functions

moments.LD.Parsing.bootstrap_data(all_data, normalization=0)
Returns bootstrapped variances for LD statistics. This function operates on data that is sums (i.e. the direct
output of compute_ld_statistics()), instead of mean statistics.

We first check that all ‘stats’, ‘bins’, ‘pops’ (if present), match across all regions

If there are N total regions, we compute N bootstrap replicates by sampling N times with replacement and sum-
ming over all ‘sums’.

Parameters

• all_data (dict) – A dictionary (with arbitrary keys), where each value is LD statistics
computed from a distinct region. all_data[reg] stats from each region has keys, ‘bins’, ‘sums’,
‘stats’, and optional ‘pops’.

• normalization (int) – we work with 𝜎2
𝑑 statistics, and by default we use population 0 to

normalize stats

moments.LD.Parsing.compute_average_stats(Gs, genotypes=True)
Takes the outputs of compute_pairwise_stats and returns the average value for each statistic.

Parameters

• Gs – A genotype matrix, of size L-by-n, where L is the number of loci and n is the sample
size. Missing data is encoded as -1.

• genotypes – If True, use 0, 1, 2 genotypes. If False, use 0, 1 phased haplotypes.

16.4. Parsing functions 173

moments, Release 1.1.0

moments.LD.Parsing.compute_average_stats_between(Gs1, Gs2, genotypes=True)
Takes the outputs of compute_pairwise_stats_between and returns the average value for each statistic.

Parameters

• Gs1 – A genotype matrices, of size L1 by n, where L1 is the number of loci and n is the
sample size. Missing data is encoded as -1.

• Gs2 – A genotype matrices, of size L2 by n, where L1 is the number of loci and n is the
sample size. Missing data is encoded as -1.

moments.LD.Parsing.compute_ld_statistics(vcf_file, bed_file=None, chromosome=None,
rec_map_file=None, map_name=None, map_sep=None,
pop_file=None, pops=None, cM=True, r_bins=None,
bp_bins=None, min_bp=None, use_genotypes=True,
use_h5=True, stats_to_compute=None, ac_filter=True,
report=True, report_spacing=1000, use_cache=True)

Computes LD statistics for a given VCF. Binning can be done by base pair or recombination distances, the latter
requiring a recombination map. For more than one population, we include a population file that maps samples
to populations, and specify with populations to compute statistics fro.

If data is phased, we can set use_genotypes to False, and there are other options for masking data.

Note: Currently, the recombination map is not given in HapMap format. Future versions will accept HapMap
formatted recombination maps and deprecate some of the boutique handling of map options here.

Parameters

• vcf_file (str) – The input VCF file name.

• bed_file (str) – An optional bed file that specifies regions over which to compute LD
statistics. If None, computes statistics for all positions in VCF.

• chromosome (str) – If None, treats all positions in VCF as coming from same chromo-
some. If multiple chromosomes are reported in the same VCF, we need to specify which
chromosome to keep variants from.

• rec_map_file (str) – The input recombination map. The format is {pos} {map (cM)}
{additional maps}

• map_name (str) – If None, takes the first map column, otherwise takes the specified map
column with the name matching the recombination map file header.

• map_sep (str) – Deprecated! We now read the recombination map, splitting by any white
space. Previous behaviour: Tells pandas how to parse the recombination map.

• pop_file (str) – A file the specifies the population for each sample in the VCF. Each
sample is listed on its own line, in the format “{sample} {pop}”. The first line must be
“sample pop”.

• pops (list(str)) – List of populations to compute statistics for. If none are given, it treates
every sample as coming from the same population.

• cM (bool) – If True, the recombination map is specified in cM. If False, the map is given in
units of Morgans.

• r_bins (list(float)) – A list of raw recombination rate bin edges.

• bp_bins (list(float)) – If r_bins are not given, a list of bp bin edges (for use when no
recombination map is specified).

174 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

• min_bp (int, float) – The minimum bp allowed for a segment specified by the bed file.

• use_genotypes (bool) – If True, we assume the data in the VCF is unphased. Otherwise,
we use phased information.

• use_h5 (bool) – If True, we use the h5 format.

• stats_to_compute (list) – If given, we compute only the statistics specified. Otherwise,
we compute all possible statistics for the populations given.

• ac_filter – Ensure at least two samples are present per population. This prevents computed
heterozygosity statistics from returning NaN when some loci have too few called samples.

• report (bool) – If True, we report the progress of our parsing.

• report_spacing (int) – We track the number of “left” variants we compute, and report
our progress with the given spacing.

• use_cache (bool) – If True, cache intermediate results.

moments.LD.Parsing.compute_pairwise_stats(Gs, genotypes=True)
Computes 𝐷2, 𝐷𝑧, 𝜋2, and 𝐷 for every pair of loci within a block of SNPs, coded as a genotype matrix.

Parameters

• Gs – A genotype matrix, of size L-by-n, where L is the number of loci and n is the sample
size. Missing data is encoded as -1.

• genotypes – If True, use 0, 1, 2 genotypes. If False, use 0, 1 phased haplotypes.

moments.LD.Parsing.compute_pairwise_stats_between(Gs1, Gs2, genotypes=True)
Computes 𝐷2, 𝐷𝑧, 𝜋2, and 𝐷 for every pair of loci between two blocks of SNPs, coded as genotype matrices.

The Gs are matrices, where rows correspond to loci and columns to individuals. Both matrices must have the
same number of individuals. If Gs1 has length L1 and Gs2 has length L2, we compute all pairwise counts, which
has size (L1*L2, 9).

We use the sparse genotype matrix representation, where we first “sparsify” the genotype matrix, and then count
two-locus genotype configurations from that, from which we compute two-locus statistics

Parameters

• Gs1 – A genotype matrices, of size L1 by n, where L1 is the number of loci and n is the
sample size. Missing data is encoded as -1.

• Gs2 – A genotype matrices, of size L2 by n, where L1 is the number of loci and n is the
sample size. Missing data is encoded as -1.

• genotypes – If True, use 0, 1, 2 genotypes. If False, use 0, 1 phased haplotypes.

moments.LD.Parsing.get_bootstrap_sets(all_data, num_bootstraps=None, normalization=0,
remove_norm_stats=True)

From a dictionary of all the regional data, resample with replacement to construct bootstrap data.

Returns a list of bootstrapped datasets of mean statistics.

Parameters

• all_data (dict) – Dictionary of regional LD statistics. Keys are region identifiers and
must be unique, and the items are the outputs of compute_ld_statistics.

• num_bootstraps (int) – The number of bootstrap replicates to compute. If None, it com-
putes the same number as the nubmer of regions in all_data.

• normalization (int) – The index of the population to normalize by. Defaults to 0.

16.4. Parsing functions 175

moments, Release 1.1.0

moments.LD.Parsing.get_genotypes(vcf_file, bed_file=None, chromosome=None, min_bp=None,
use_h5=True, report=True)

Given a vcf file, we extract the biallelic SNP genotypes. If bed_file is None, we use all valid variants. Otherwise
we filter genotypes by the given bed file. If chromosome is given, filters to keep snps only in given chrom (useful
for vcfs spanning multiple chromosomes).

If use_h5 is True, we try to load the h5 file, which has the same path/name as vcf_file, but with {fname}.h5
instead of {fname}.vcf or {fname}.vcf.gz. If the h5 file does not exist, we create it and save it as {fname}.h5

Returns (biallelic positions, biallelic genotypes, biallelic allele counts, sampled ids).

Parameters

• vcf_file (str) – A VCF-formatted file.

• bed_file (str, optional) – A bed file specifying regions to compute statistics from.
The chromosome name formatting must match the chromosome name formatting of the input
VCF (i.e., both carry the leading “chr” or both omit it).

• min_bp (int, optional) – only used with bed file, filters out features that are smaller than
min_bp.

• chromosome (int or str, optional) – Chromosome to compute LD statistics from.

• use_h5 (bool, optional) – If use_h5 is True, we try to load the h5 file, which has the
same path/name as vcf_file, but with .h5 instead of .vcf or .vcf.gz extension. If the h5 file
does not exist, we create it and save it with .h5 extension. Defaults to True.

• report (bool, optional) – Prints progress updates if True, silent otherwise. Defaults to
True.

moments.LD.Parsing.means_from_region_data(all_data, stats, norm_idx=0)
Get means over all parsed regions.

Parameters

• all_data (dict) – A dictionary with keys as unique identifiers of the regions and values as
reported stats from compute_ld_statistics.

• stats (list of lists) – The list of LD and H statistics that are present in the data repli-
cates.

• norm_idx (int, optional) – The index of the population to normalize by.

moments.LD.Parsing.subset_data(data, pops_to, normalization=0, r_min=None, r_max=None,
remove_Dz=False)

Take the output data and get r_edges, ms, vcs, and stats to pass to inference machinery. pops_to are the subset
of the populations to marginalize the data to. r_min and r_max trim bins that fall outside of this range, and
remove_Dz allows us to remove all 𝜎𝐷𝑧 statistics.

Parameters

• data – The output of bootstrap_data, which contains bins, statistics, populations, means,
and variance-covariance matrices.

• pops_to – A list of populations to subset to.

• normalization – The population index that the original data was normalized by.

• r_min – The minimum recombination distance to keep.

• r_max – The maximum recombination distance to keep.

• remove_Dz – If True, remove all Dz statistics. Otherwise keep them.

176 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

16.5 Inference and computing confidence intervals

16.5.1 Inference methods

moments.LD.Inference.bin_stats(model_func, params, rho=[], theta=0.001, spread=None, kwargs={})
Computes LD statist for a given model function over bins defined by rho. Here, rho gives the bin edges, and we
assume no spaces between bins. That is, if the length of the input recombination rates is 𝑙, the number of bins is
𝑙 − 1.

Parameters

• model_func – The model function that takes parameters in the form model_func(params,
rho=rho, theta=theta, **kwargs).

• params (list of floats) – The parameters to evaluate the model at.

• rho (list of floats) – The scaled recombination rate bin edges.

• theta (float, optional) – The mutation rate

• spread (list of arrays) – A list of length rho-1 (number of bins), where each entry is
an array of length rho+1 (number of bins plus amount outside bin range to each side). Each
array must sum to one.

• kwargs – Extra keyword arguments to pass to model_func.

moments.LD.Inference.ll_over_bins(xs, mus, Sigmas)
Compute the composite log-likelihood over LD and heterozygosity statistics, given data and expectations. Inputs
must be in the same order, and we assume each bin is independent, so we sum _ll(x, mu, Sigma) over each bin.

Parameters

• xs – A list of data arrays.

• mus – A list of model function output arrays, same length as xs.

• Sigmas – A list of var-cov matrices, same length as xs.

moments.LD.Inference.optimize_log_fmin(p0, data, model_func, rs=None, theta=None, u=2e-08, Ne=None,
lower_bound=None, upper_bound=None, verbose=0,
flush_delay=0.5, normalization=0, func_args=[],
func_kwargs={}, fixed_params=None, use_afs=False, Leff=None,
multinom=False, ns=None, statistics=None, pass_Ne=False,
spread=None, maxiter=None, maxfun=None)

Optimize (using the log of) the parameters using a downhill simplex algorithm. Initial parameters p0, the data
[means, varcovs], the demographic model_func, and rs to specify recombination bin edges are required.
Ne must either be specified as a keyword argument or is included as the last parameter in p0.

Parameters

• p0 (list) – The initial guess for demographic parameters, demography parameters plus
(optionally) Ne.

• data (list) – The parsed data[means, varcovs, fs]. The frequency spectrum fs is optional,
and used only if use_afs=True.

– Means: The list of mean statistics within each bin (has length len(rs) or len(rs) - 1
if using AFS). If we are not using the AFS, which is typical, the heterozygosity statistics
come last.

– varcovs: The list of varcov matrices matching the data in means.

16.5. Inference and computing confidence intervals 177

moments, Release 1.1.0

• model_func (list) – The demographic model to compute statistics for a given rho. If we
are using AFS, it’s a list of the two models [LD func, AFS func]. If we’re using LD stats
alone, we pass a single LD model as a list: [LD func].

• rs (list) – The list of raw recombination rates defining bin edges.

• theta (float, optional) – The population scaled per base mutation rate (4*Ne*mu, not
4*Ne*mu*L).

• u (float, optional) – The raw per base mutation rate. Cannot be used with theta.

• Ne (float, optional) – The fixed effective population size to scale u and r. If Ne is a
parameter to fit, it should be the last parameter in p0.

• lower_bound (list, optional) – Defaults to None. Constraints on the lower bounds
during optimization. These are given as lists of the same length of the parameters.

• upper_bound (list, optional) – Defaults to None. Constraints on the upper bounds
during optimization. These are given as lists of the same length of the parameters.

• verbose (int, optional) – If an integer greater than 0, prints updates of the optimization
procedure at intervals given by that spacing.

• func_args (list, optional) – Additional arguments to be passed to model_func.

• func_kwargs (dict, optional) – Additional keyword arguments to be passed to
model_func.

• fixed_params (list, optional) – Defaults to None. To fix some parameters, this should
be a list of equal length as p0, with None for parameters to be fit and fixed values at corre-
sponding indexes.

• use_afs (bool, optional) – Defaults to False. We can pass a model to compute the
frequency spectrum and use that instead of heterozygosity statistics for single-locus data.

• Leff (float, optional) – The effective length of genome from which the fs was gener-
ated (only used if fitting to afs).

• multinom (bool, optional) – Only used if we are fitting the AFS. If True, the likelihood
is computed for an optimally rescaled FS. If False, the likelihood is computed for a fixed
scaling of the FS found by theta=4*Ne*u and Leff

• ns (list of ints, optional) – The sample size, which is only needed if we are using
the frequency spectrum, as the sample size does not affect mean LD statistics.

• statistics (list, optional) – Defaults to None, which assumes that all statistics are
present and in the conventional default order. If the data is missing some statistics, we must
specify which statistics are present using the subset of statistic names given by moments.
LD.Util.moment_names(num_pops).

• pass_Ne (bool, optional) – Defaults to False. If True, the demographic model in-
cludes Ne as a parameter (in the final position of input parameters).

• maxiter (int) – Defaults to None. Maximum number of iterations to perform.

• maxfun (int) – Defaults to None. Maximum number of function evaluations to make.

moments.LD.Inference.optimize_log_lbfgsb(p0, data, model_func, rs=None, theta=None, u=2e-08,
Ne=None, lower_bound=None, upper_bound=None,
verbose=0, flush_delay=0.5, normalization=0, func_args=[],
func_kwargs={}, fixed_params=None, use_afs=False,
Leff=None, multinom=False, ns=None, statistics=None,
pass_Ne=False, spread=None, maxiter=40000, epsilon=0.001,
pgtol=1e-05)

178 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

Optimize (using the log of) the parameters using the modified Powell’s method, which optimizes slices of pa-
rameter space sequentially. Initial parameters p0, the data [means, varcovs], the demographic model_func,
and rs to specify recombination bin edges are required. Ne must either be specified as a keyword argument or is
included as the last parameter in p0.

It is best at burrowing down a single minimum. This method is better than optimize_log if the optimum lies at
one or more of the parameter bounds. However, if your optimum is not on the bounds, this method may be much
slower.

Because this works in log(params), it cannot explore values of params < 0. It should also perform better when
parameters range over scales.

The L-BFGS-B method was developed by Ciyou Zhu, Richard Byrd, and Jorge Nocedal. The algorithm is
described in:

• R. H. Byrd, P. Lu and J. Nocedal. A Limited Memory Algorithm for Bound Constrained Optimization,
(1995), SIAM Journal on Scientific and Statistical Computing , 16, 5, pp. 1190-1208.

• C. Zhu, R. H. Byrd and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large
scale bound constrained optimization (1997), ACM Transactions on Mathematical Software, Vol 23, Num.
4, pp. 550-560.

Parameters

• p0 (list) – The initial guess for demographic parameters, demography parameters plus
(optionally) Ne.

• data (list) – The parsed data[means, varcovs, fs]. The frequency spectrum fs is optional,
and used only if use_afs=True.

– Means: The list of mean statistics within each bin (has length len(rs) or len(rs) - 1
if using AFS). If we are not using the AFS, which is typical, the heterozygosity statistics
come last.

– varcovs: The list of varcov matrices matching the data in means.

• model_func (list) – The demographic model to compute statistics for a given rho. If we
are using AFS, it’s a list of the two models [LD func, AFS func]. If we’re using LD stats
alone, we pass a single LD model as a list: [LD func].

• rs (list) – The list of raw recombination rates defining bin edges.

• theta (float, optional) – The population scaled per base mutation rate (4*Ne*mu, not
4*Ne*mu*L).

• u (float, optional) – The raw per base mutation rate. Cannot be used with theta.

• Ne (float, optional) – The fixed effective population size to scale u and r. If Ne is a
parameter to fit, it should be the last parameter in p0.

• lower_bound (list, optional) – Defaults to None. Constraints on the lower bounds
during optimization. These are given as lists of the same length of the parameters.

• upper_bound (list, optional) – Defaults to None. Constraints on the upper bounds
during optimization. These are given as lists of the same length of the parameters.

• verbose (int, optional) – If an integer greater than 0, prints updates of the optimization
procedure at intervals given by that spacing.

• func_args (list, optional) – Additional arguments to be passed to model_func.

16.5. Inference and computing confidence intervals 179

moments, Release 1.1.0

• func_kwargs (dict, optional) – Additional keyword arguments to be passed to
model_func.

• fixed_params (list, optional) – Defaults to None. To fix some parameters, this should
be a list of equal length as p0, with None for parameters to be fit and fixed values at corre-
sponding indexes.

• use_afs (bool, optional) – Defaults to False. We can pass a model to compute the
frequency spectrum and use that instead of heterozygosity statistics for single-locus data.

• Leff (float, optional) – The effective length of genome from which the fs was gener-
ated (only used if fitting to afs).

• multinom (bool, optional) – Only used if we are fitting the AFS. If True, the likelihood
is computed for an optimally rescaled FS. If False, the likelihood is computed for a fixed
scaling of the FS found by theta=4*Ne*u and Leff

• ns (list of ints, optional) – The sample size, which is only needed if we are using
the frequency spectrum, as the sample size does not affect mean LD statistics.

• statistics (list, optional) – Defaults to None, which assumes that all statistics are
present and in the conventional default order. If the data is missing some statistics, we must
specify which statistics are present using the subset of statistic names given by moments.
LD.Util.moment_names(num_pops).

• pass_Ne (bool, optional) – Defaults to False. If True, the demographic model in-
cludes Ne as a parameter (in the final position of input parameters).

• maxiter (int) – Defaults to 40,000. Maximum number of iterations to perform.

• epsilon – Step-size to use for finite-difference derivatives.

• pgtol (float) – Convergence criterion for optimization. For more info, see
help(scipy.optimize.fmin_l_bfgs_b)

moments.LD.Inference.optimize_log_powell(p0, data, model_func, rs=None, theta=None, u=2e-08,
Ne=None, lower_bound=None, upper_bound=None,
verbose=0, flush_delay=0.5, normalization=0, func_args=[],
func_kwargs={}, fixed_params=None, use_afs=False,
Leff=None, multinom=False, ns=None, statistics=None,
pass_Ne=False, spread=None, maxiter=None, maxfun=None)

Optimize (using the log of) the parameters using the modified Powell’s method, which optimizes slices of pa-
rameter space sequentially. Initial parameters p0, the data [means, varcovs], the demographic model_func,
and rs to specify recombination bin edges are required. Ne must either be specified as a keyword argument or is
included as the last parameter in p0.

Parameters

• p0 (list) – The initial guess for demographic parameters, demography parameters plus
(optionally) Ne.

• data (list) – The parsed data[means, varcovs, fs]. The frequency spectrum fs is optional,
and used only if use_afs=True.

– Means: The list of mean statistics within each bin (has length len(rs) or len(rs) - 1
if using AFS). If we are not using the AFS, which is typical, the heterozygosity statistics
come last.

– varcovs: The list of varcov matrices matching the data in means.

180 Chapter 16. API for linkage disequilibrium

moments, Release 1.1.0

• model_func (list) – The demographic model to compute statistics for a given rho. If we
are using AFS, it’s a list of the two models [LD func, AFS func]. If we’re using LD stats
alone, we pass a single LD model as a list: [LD func].

• rs (list) – The list of raw recombination rates defining bin edges.

• theta (float, optional) – The population scaled per base mutation rate (4*Ne*mu, not
4*Ne*mu*L).

• u (float, optional) – The raw per base mutation rate. Cannot be used with theta.

• Ne (float, optional) – The fixed effective population size to scale u and r. If Ne is a
parameter to fit, it should be the last parameter in p0.

• lower_bound (list, optional) – Defaults to None. Constraints on the lower bounds
during optimization. These are given as lists of the same length of the parameters.

• upper_bound (list, optional) – Defaults to None. Constraints on the upper bounds
during optimization. These are given as lists of the same length of the parameters.

• verbose (int, optional) – If an integer greater than 0, prints updates of the optimization
procedure at intervals given by that spacing.

• func_args (list, optional) – Additional arguments to be passed to model_func.

• func_kwargs (dict, optional) – Additional keyword arguments to be passed to
model_func.

• fixed_params (list, optional) – Defaults to None. To fix some parameters, this should
be a list of equal length as p0, with None for parameters to be fit and fixed values at corre-
sponding indexes.

• use_afs (bool, optional) – Defaults to False. We can pass a model to compute the
frequency spectrum and use that instead of heterozygosity statistics for single-locus data.

• Leff (float, optional) – The effective length of genome from which the fs was gener-
ated (only used if fitting to afs).

• multinom (bool, optional) – Only used if we are fitting the AFS. If True, the likelihood
is computed for an optimally rescaled FS. If False, the likelihood is computed for a fixed
scaling of the FS found by theta=4*Ne*u and Leff

• ns (list of ints, optional) – The sample size, which is only needed if we are using
the frequency spectrum, as the sample size does not affect mean LD statistics.

• statistics (list, optional) – Defaults to None, which assumes that all statistics are
present and in the conventional default order. If the data is missing some statistics, we must
specify which statistics are present using the subset of statistic names given by moments.
LD.Util.moment_names(num_pops).

• pass_Ne (bool, optional) – Defaults to False. If True, the demographic model in-
cludes Ne as a parameter (in the final position of input parameters).

• maxiter (int) – Defaults to None. Maximum number of iterations to perform.

• maxfun (int) – Defaults to None. Maximum number of function evaluations to make.

moments.LD.Inference.remove_nonpresent_statistics(y, statistics=[[], []])
Removes data not found in the given set of statistics.

Parameters

• y (LDstats object.) – LD statistics.

• statistics – A list of lists for two and one locus statistics to keep.

16.5. Inference and computing confidence intervals 181

moments, Release 1.1.0

moments.LD.Inference.remove_normalized_data(means, varcovs, normalization=0, num_pops=1,
statistics=None)

Returns data means and covariance matrices with the normalizing statistics removed.

Parameters

• means (list of arrays) – List of means normalized statistics, where each entry is the
full set of statistics for a given recombination distance.

• varcovs (list of arrays) – List of the corresponding variance covariance matrices.

• normalization (int) – The index of the normalizing population.

• num_pops (int) – The number of populations in the data set.

moments.LD.Inference.remove_normalized_lds(y, normalization=0)
Returns LD statistics with the normalizing statistic removed.

Parameters

• y (LDstats object) – An LDstats object that has been normalized to get 𝜎2
𝐷-formatted statis-

tics.

• normalization (int) – The index of the normalizing population.

moments.LD.Inference.sigmaD2(y, normalization=0)
Compute the 𝜎2

𝐷 statistics normalizing by the heterozygosities in a given population.

Parameters

• y (LDstats object) – The input data.

• normalization (int, optional) – The index of the normalizing population (normalized
by pi2_i_i_i_i and H_i_i), default set to 0.

16.5.2 Confidence intervals

Parameter uncertainties are computed using Godambe information, described in Coffman et al, MBE (2016). doi:
https://doi.org/10.1093/molbev/msv255

If you use moments.LD.Godambe to compute parameter uncertainties, please cite that paper. This was first developed
by Alec Coffman for computing uncertainties from inferences performed with dadi, modified here to handle LD decay
curves.

moments.LD.Godambe.FIM_uncert(model_func, p0, ms, vcs, log=False, eps=0.01, r_edges=None,
normalization=0, pass_Ne=False, statistics=None, verbose=0)

Parameter uncertainties from Fisher Information Matrix. This approach typically underestimates the size of
the true confidence intervals, as it does not take into account linkage between loci that causes data to be non-
independent.

Returns standard deviations of parameter values.

Parameters

• model_func – Model function

• p0 – Best-fit parameters for model_func, with inferred Ne in last entry of parameter list.

• ms – See below..

• vcs – Original means and covariances of statistics from data. If statistics are not give, we
remove the normalizing statistics. Otherwise, these need to be pared down so that the nor-
malizing statistics are removed.

182 Chapter 16. API for linkage disequilibrium

https://doi.org/10.1093/molbev/msv255

moments, Release 1.1.0

• eps – Fractional stepsize to use when taking finite-difference derivatives. Note that if
eps*param is < 1e-12, then the step size for that parameter will simply be eps, to avoid
numerical issues with small parameter perturbations.

• log – If True, assume log-normal distribution of parameters. Returned values are then the
standard deviations of the logs of the parameter values, which can be interpreted as relative
parameter uncertainties.

• return_GIM – If true, also return the full GIM.

• r_edges – The bin edges for LD statistics.

• normalization – The index of the population that we normalized by.

• pass_Ne – If True, Ne is a parameter in the model function, and by convention is the last
entry in the parameters list. If False, Ne is only used to scale recombination rates.

• statistics – Statistics that we have included given as a list of lists: [ld_stats, h_stats]. If
statistics is not given, we assume all statistics are included except for the normalizing statistic
in each bin

• verbose (int, optional) – If an integer greater than 0, prints updates of the number of
function calls and tested parameters at intervals given by that spacing.

moments.LD.Godambe.GIM_uncert(model_func, all_boot, p0, ms, vcs, log=False, eps=0.01, return_GIM=False,
r_edges=None, normalization=0, pass_Ne=False, statistics=None,
verbose=0)

Parameter uncertainties from Godambe Information Matrix (GIM). If you use this method, please cite Coffman
et al., MBE (2016).

Returns standard deviations of parameter values.

Parameters

• model_func – Model function

• all_boot – List of bootstrap LD stat means [m0, m1, m2, . . .]

• p0 – Best-fit parameters for model_func, with inferred Ne in last entry of parameter list.

• ms – See below..

• vcs – Original means and covariances of statistics from data. If statistics are not give, we
remove the normalizing statistics. Otherwise, these need to be pared down so that the nor-
malizing statistics are removed.

• eps – Fractional stepsize to use when taking finite-difference derivatives. Note that if
eps*param is < 1e-12, then the step size for that parameter will simply be eps, to avoid
numerical issues with small parameter perturbations.

• log – If True, assume log-normal distribution of parameters. Returned values are then the
standard deviations of the logs of the parameter values, which can be interpreted as relative
parameter uncertainties.

• return_GIM – If true, also return the full GIM.

• r_edges – The bin edges for LD statistics.

• normalization – The index of the population that we normalized by.

• pass_Ne – If True, Ne is a parameter in the model function, and by convention is the last
entry in the parameters list. If False, Ne is only used to scale recombination rates.

16.5. Inference and computing confidence intervals 183

https://doi.org/10.1093/molbev/msv255
https://doi.org/10.1093/molbev/msv255

moments, Release 1.1.0

• statistics – Statistics that we have included given as a list of lists: [ld_stats, h_stats]. If
statistics is not given, we assume all statistics are included except for the normalizing statistic
in each bin

• verbose (int, optional) – If an integer greater than 0, prints updates of the number of
function calls and tested parameters at intervals given by that spacing.

16.6 Plotting

Todo: These docs are still needed.

184 Chapter 16. API for linkage disequilibrium

BIBLIOGRAPHY

[Jouganous2017] Jouganous, Julien, et al. “Inferring the joint demographic history of multiple populations: beyond
the diffusion approximation.” Genetics 206.3 (2017): 1549-1567.

[Krukov2021] Krukov, Ivan, and Simon Gravel. “Taming strong selection with large sample sizes.” bioRxiv (2021),
doi: 10.1101/2021.03.30.437711.

[Sawyer1992] Sawyer, Stanley A., and Daniel L. Hartl. “Population genetics of polymorphism and divergence.” Ge-
netics 132.4 (1992): 1161-1176.

[Coffman2016] Coffman, Alec J., et al. “Computationally efficient composite likelihood statistics for demographic
inference.” Molecular biology and evolution 33.2 (2016): 591-593.

[Hill1968] Hill, W. G., and Alan Robertson. “Linkage disequilibrium in finite populations.” Theoretical and applied
genetics 38.6 (1968): 226-231.

[Ragsdale2019] Ragsdale, Aaron P., and Simon Gravel. “Models of archaic admixture and recent history from two-
locus statistics.” PLoS genetics 15.6 (2019): e1008204.

[Ragsdale2020] Ragsdale, Aaron P., and Simon Gravel. “Unbiased estimation of linkage disequilibrium from unphased
data.” Molecular Biology and Evolution 37.3 (2020): 923-932.

[Ardlie2001] Ardlie, Kristin, et al. “Lower-than-expected linkage disequilibrium between tightly linked markers in
humans suggests a role for gene conversion.” The American Journal of Human Genetics 69.3 (2001): 582-
589.

[Harris2014] Harris, Kelley, and Rasmus Nielsen. “Error-prone polymerase activity causes multinucleotide mutations
in humans.” Genome research 24.9 (2014): 1445-1454.

[Kelleher2016] Kelleher, Jerome, Alison M. Etheridge, and Gilean McVean. “Efficient coalescent simulation and ge-
nealogical analysis for large sample sizes.” PLoS computational biology 12.5 (2016): e1004842.

[Coffman2016] Coffman, Alec J., et al. “Computationally efficient composite likelihood statistics for demographic
inference.” Molecular biology and evolution 33.2 (2016): 591-593.

[Gutenkunst2009] Gutenkunst, Ryan N., et al. “Inferring the joint demographic history of multiple populations from
multidimensional SNP frequency data.” PLoS genet 5.10 (2009): e1000695.

[Ragsdale2020] Ragsdale, Aaron P., et al. “Lessons learned from bugs in models of human history.” The American
Journal of Human Genetics 107.4 (2020): 583-588.

[Boyko] Boyko, Adam R., et al. “Assessing the evolutionary impact of amino acid mutations in the human genome.”
PLoS Genetics 4.5 (2008): e1000083.

[Karczewski] Karczewski, Konrad J., et al. “The mutational constraint spectrum quantified from variation in 141,456
humans.” Nature 581.7809 (2020): 434-443.

185

moments, Release 1.1.0

[Keightley] Keightley, Peter D., and Adam Eyre-Walker. “Joint inference of the distribution of fitness effects of dele-
terious mutations and population demography based on nucleotide polymorphism frequencies.” Genetics
177.4 (2007): 2251-2261.

[Kim] Kim, Bernard Y., Christian D. Huber, and Kirk E. Lohmueller. “Inference of the distribution of selection
coefficients for new nonsynonymous mutations using large samples.” Genetics 206.1 (2017): 345-361.

[Ragsdale] Ragsdale, Aaron P., et al. “Triallelic population genomics for inferring correlated fitness effects of same
site nonsynonymous mutations.” Genetics 203.1 (2016): 513-523.

[1000G] 1000 Genomes Project Consortium. “A global reference for human genetic variation.” Nature 526.7571
(2015): 68-74.

[Garcia] Garcia, Jesse A., and Kirk E. Lohmueller. “Negative linkage disequilibrium between amino acid changing
variants reveals interference among deleterious mutations in the human genome.” bioRxiv (2020).

[Good] Good, Benjamin H. “Linkage disequilibrium between rare mutations.” Genetics (2022).

[Hudson] Hudson, Richard R. “Two-locus sampling distributions and their application.” Genetics 159.4 (2001):
1805-1817.

[Ohta] Ohta, Tomoko, and Motoo Kimura. “Linkage disequilibrium between two segregating nucleotide sites
under the steady flux of mutations in a finite population.” Genetics 68.4 (1971): 571.

[Ragsdale_Gutenkunst] Ragsdale, Aaron P. and Ryan N. Gutenkunst. “Inferring demographic history using two-locus
statistics.” Genetics 206.2 (2017): 1037-1048.

[Ragsdale_Gravel] Ragsdale, Aaron P. and Simon Gravel. “Models of archaic admixture and recent history from two-
locus statistics.” PLoS Genetics 15.8 (2019): e1008204.

[Sandler] Sandler, George, Stephen I. Wright, and Aneil F. Agrawal. “Using patterns of signed linkage disequilibria
to test for epistasis in flies and plants.” bioRxiv (2020).

[Sanjak] Sanjak, Jaleal S., Anthony D. Long, and Kevin R. Thornton. “A model of compound heterozygous, loss-
of-function alleles is broadly consistent with observations from complex-disease GWAS datasets.” PLoS
genetics 13.1 (2017): e1006573.

[Sohail] Sohail, Mashaal, et al. “Negative selection in humans and fruit flies involves synergistic epistasis.” Science
356.6337 (2017): 539-542.

186 Bibliography

PYTHON MODULE INDEX

m
moments.Demographics1D, 148
moments.Demographics2D, 149
moments.Demographics3D, 152
moments.Godambe, 157
moments.LD.Demographics1D, 170
moments.LD.Demographics2D, 171
moments.LD.Demographics3D, 172
moments.LD.Godambe, 182
moments.LD.Inference, 177
moments.LD.Parsing, 173
moments.LD.Util, 172
moments.TwoLocus.Demographics, 84

187

moments, Release 1.1.0

188 Python Module Index

INDEX

A
admix() (moments.LD.LDstats method), 165
admix() (moments.Spectrum method), 138
ancestral_misid() (moments.TwoLocus.TLSpectrum

method), 82
Anscombe_Poisson_residual() (in module mo-

ments.Inference), 153

B
bin_stats() (in module moments.LD.Inference), 177
bootstrap() (in module moments.Misc), 147
bootstrap_data() (in module moments.LD.Parsing),

173
bottlegrowth() (in module mo-

ments.Demographics1D), 148
bottlegrowth() (in module mo-

ments.Demographics2D), 150
bottlegrowth() (in module mo-

ments.LD.Demographics1D), 170
bottlegrowth() (in module mo-

ments.TwoLocus.Demographics), 84
bottlegrowth_split() (in module mo-

ments.Demographics2D), 150
bottlegrowth_split_mig() (in module mo-

ments.Demographics2D), 151
branch() (moments.Spectrum method), 138

C
compute_average_stats() (in module mo-

ments.LD.Parsing), 173
compute_average_stats_between() (in module mo-

ments.LD.Parsing), 173
compute_ld_statistics() (in module mo-

ments.LD.Parsing), 174
compute_pairwise_stats() (in module mo-

ments.LD.Parsing), 175
compute_pairwise_stats_between() (in module mo-

ments.LD.Parsing), 175
count_data_dict() (in module moments.Misc), 147

D
D() (moments.TwoLocus.TLSpectrum method), 81

D2() (moments.TwoLocus.TLSpectrum method), 81
Dz() (moments.TwoLocus.TLSpectrum method), 82

E
equilibrium() (in module mo-

ments.TwoLocus.Demographics), 84

F
f2() (moments.LD.LDstats method), 165
f3() (moments.LD.LDstats method), 166
f4() (moments.LD.LDstats method), 166
FIM_uncert() (in module moments.Godambe), 157
FIM_uncert() (in module moments.LD.Godambe), 182
fixed_size_sample() (moments.Spectrum method),

139
fold() (moments.Spectrum method), 139
fold() (moments.TwoLocus.TLSpectrum method), 82
fold_ancestral() (moments.Triallele.TriSpectrum

method), 87
fold_major() (moments.Triallele.TriSpectrum method),

87
from_angsd() (moments.Spectrum static method), 139
from_data_dict() (moments.Spectrum static method),

139
from_demes() (moments.LD.LDstats static method), 166
from_demes() (moments.Spectrum static method), 140
from_file() (moments.LD.LDstats static method), 167
from_file() (moments.Spectrum static method), 141
from_file() (moments.Triallele.TriSpectrum static

method), 88
from_file() (moments.TwoLocus.TLSpectrum static

method), 82
from_ms_file() (moments.Spectrum static method),

141
fromfile() (moments.Spectrum static method), 141
Fst() (moments.Spectrum method), 137

G
genotype_matrix() (moments.Spectrum method), 142
get_bootstrap_sets() (in module mo-

ments.LD.Parsing), 175

189

moments, Release 1.1.0

get_genotypes() (in module moments.LD.Parsing),
176

GIM_uncert() (in module moments.Godambe), 158
GIM_uncert() (in module moments.LD.Godambe), 183
growth() (in module moments.Demographics1D), 148
growth() (in module moments.LD.Demographics1D),

170
growth() (in module mo-

ments.TwoLocus.Demographics), 84

H
H() (moments.LD.LDstats method), 165
het_names() (in module moments.LD.Util), 172

I
IM() (in module moments.Demographics2D), 149
IM_pre() (in module moments.Demographics2D), 149
integrate() (moments.LD.LDstats method), 167
integrate() (moments.Spectrum method), 142
integrate() (moments.Triallele.TriSpectrum method),

88
integrate() (moments.TwoLocus.TLSpectrum method),

82

L
LD() (moments.LD.LDstats method), 165
ld_names() (in module moments.LD.Util), 172
LDstats (class in moments.LD), 165
left() (moments.TwoLocus.TLSpectrum method), 83
linear_Poisson_residual() (in module mo-

ments.Inference), 153
ll() (in module moments.Inference), 152
ll_multinom() (in module moments.Inference), 152
ll_over_bins() (in module moments.LD.Inference),

177
log() (moments.Spectrum method), 143
log() (moments.Triallele.TriSpectrum method), 88
LRT_adjust() (in module moments.Godambe), 158

M
make_data_dict_vcf() (in module moments.Misc),

146
map_moment() (in module moments.LD.Util), 172
marginalize() (moments.LD.LDstats method), 167
marginalize() (moments.Spectrum method), 143
mask_corners() (moments.Spectrum method), 143
mask_fixed() (moments.Triallele.TriSpectrum method),

88
mask_fixed() (moments.TwoLocus.TLSpectrum

method), 83
mask_infeasible() (moments.Triallele.TriSpectrum

method), 88
mask_infeasible() (moments.TwoLocus.TLSpectrum

method), 83

means_from_region_data() (in module mo-
ments.LD.Parsing), 176

merge() (moments.LD.LDstats method), 168
module

moments.Demographics1D, 148
moments.Demographics2D, 149
moments.Demographics3D, 152
moments.Godambe, 157
moments.LD.Demographics1D, 170
moments.LD.Demographics2D, 171
moments.LD.Demographics3D, 172
moments.LD.Godambe, 182
moments.LD.Inference, 177
moments.LD.Parsing, 173
moments.LD.Util, 172
moments.TwoLocus.Demographics, 84

moment_names() (in module moments.LD.Util), 172
moments.Demographics1D

module, 148
moments.Demographics2D

module, 149
moments.Demographics3D

module, 152
moments.Godambe

module, 157
moments.LD.Demographics1D

module, 170
moments.LD.Demographics2D

module, 171
moments.LD.Demographics3D

module, 172
moments.LD.Godambe

module, 182
moments.LD.Inference

module, 177
moments.LD.Parsing

module, 173
moments.LD.Util

module, 172
moments.TwoLocus.Demographics

module, 84

N
names() (moments.LD.LDstats method), 168

O
optimal_sfs_scaling() (in module mo-

ments.Inference), 152
optimally_scaled_sfs() (in module mo-

ments.Inference), 152
optimize_log() (in module moments.Inference), 153
optimize_log_fmin() (in module moments.Inference),

154

190 Index

moments, Release 1.1.0

optimize_log_fmin() (in module mo-
ments.LD.Inference), 177

optimize_log_lbfgsb() (in module mo-
ments.Inference), 156

optimize_log_lbfgsb() (in module mo-
ments.LD.Inference), 178

optimize_log_powell() (in module mo-
ments.Inference), 155

optimize_log_powell() (in module mo-
ments.LD.Inference), 180

out_of_Africa() (in module mo-
ments.Demographics3D), 152

out_of_Africa() (in module mo-
ments.LD.Demographics3D), 172

P
perturb_params() (in module moments.LD.Util), 172
perturb_params() (in module moments.Misc), 146
pi() (moments.Spectrum method), 143
pi() (moments.Triallele.TriSpectrum method), 88
pi2() (moments.TwoLocus.TLSpectrum method), 83
project() (moments.Spectrum method), 143
project() (moments.Triallele.TriSpectrum method), 88
project() (moments.TwoLocus.TLSpectrum method),

83
pulse_migrate() (moments.LD.LDstats method), 168
pulse_migrate() (moments.Spectrum method), 144

R
remove_nonpresent_statistics() (in module mo-

ments.LD.Inference), 181
remove_normalized_data() (in module mo-

ments.LD.Inference), 182
remove_normalized_lds() (in module mo-

ments.LD.Inference), 182
rescale_params() (in module moments.LD.Util), 173
right() (moments.TwoLocus.TLSpectrum method), 83

S
S() (moments.Spectrum method), 138
S() (moments.Triallele.TriSpectrum method), 87
S() (moments.TwoLocus.TLSpectrum method), 82
sample() (moments.Spectrum method), 144
scramble_pop_ids() (moments.Spectrum method), 144
set_cache_path() (in module mo-

ments.TwoLocus.Demographics), 85
sigmaD2() (in module moments.LD.Inference), 182
snm() (in module moments.Demographics1D), 148
snm() (in module moments.Demographics2D), 151
snm() (in module moments.LD.Demographics1D), 170
snm() (in module moments.LD.Demographics2D), 171
Spectrum (class in moments), 137
split() (moments.LD.LDstats method), 168

split() (moments.Spectrum method), 144
split_mig() (in module moments.Demographics2D),

151
split_mig() (in module mo-

ments.LD.Demographics2D), 171
steady_state() (moments.LD.LDstats static method),

168
subset_data() (in module moments.LD.Parsing), 176
swap_axes() (moments.Spectrum method), 144
swap_pops() (moments.LD.LDstats method), 169

T
Tajima_D() (moments.Spectrum method), 138
theta_L() (moments.Spectrum method), 145
three_epoch() (in module moments.Demographics1D),

148
three_epoch() (in module mo-

ments.LD.Demographics1D), 170
three_epoch() (in module mo-

ments.TwoLocus.Demographics), 85
TLSpectrum (class in moments.TwoLocus), 81
to_file() (moments.LD.LDstats method), 169
to_file() (moments.Spectrum method), 145
to_file() (moments.Triallele.TriSpectrum method), 88
to_file() (moments.TwoLocus.TLSpectrum method),

83
tofile() (moments.Spectrum method), 145
TriSpectrum (class in moments.Triallele), 87
two_epoch() (in module moments.Demographics1D),

149
two_epoch() (in module mo-

ments.LD.Demographics1D), 171
two_epoch() (in module mo-

ments.TwoLocus.Demographics), 85

U
unfold() (moments.Spectrum method), 146
unfold() (moments.Triallele.TriSpectrum method), 89
unfold() (moments.TwoLocus.TLSpectrum method), 84
unmask_all() (moments.Spectrum method), 146

W
Watterson_theta() (moments.Spectrum method), 138

Z
Zengs_E() (moments.Spectrum method), 138

Index 191

	Introduction
	Citations
	Change log
	1.1.15
	1.1.14
	1.1.13
	1.1.12
	1.1.11
	1.1.10
	1.1.9
	1.1.8
	1.1.7
	1.1.6
	1.1.5
	1.1.4
	1.1.3
	1.1.2
	1.1.1
	1.1.0
	1.0.9
	1.0.8
	1.0.7
	1.0.6
	1.0.5
	1.0.4
	1.0.3

	Installation
	Using conda
	Using pip
	Dependencies and details

	The Site Frequency Spectrum
	The SFS
	Examples

	Spectrum objects in moments
	Manipulating SFS
	Folding
	Projecting
	Marginalizing
	Resampling

	Demographic events
	Population splits and branches
	Admixture and mergers

	Integration
	Size functions
	Integration time and time units
	Migration rates
	Mutation rates and mutation model
	Reversible mutations
	Illustration: ancestral state misidentification

	Selection and dominance
	Ancient samples and frozen populations

	Computing summary statistics
	Compute SFS from VCF
	Plotting the SFS
	References

	SFS Inference
	Computing likelihoods
	Optimization
	Single population example
	Confidence intervals

	Two population example

	References

	Multi-population LD statistics
	Linkage disequilibrium
	LD decay curves
	Multiple populations
	Archaic admixture

	Demographic events
	Extinction/marginalization
	Population splits
	Admixture and mergers
	Pulse migration

	Integration
	References

	Parsing LD statistics
	Binned LD decay
	Parsing from a VCF
	Using a recombination map
	Populations and pop-file
	Masking and using bed files
	Computing a subset of statistics
	Phased vs unphased data

	Computing averages and covariances over regions
	Example
	Bootstrapping over multiple regions

	LD statistics in genotype blocks
	References

	Inferring demography with LD
	Likelihood framework
	Defining demographic models
	Running optimization
	Example

	Computing confidence intervals
	Example

	References

	Specifying models with demes
	What is demes?
	Simulating the SFS and LD using a demes model
	Ancient samples
	Alternative samples specification
	Linkage disequilibrium
	Selection and dominance in Demes.SFS

	Using Demes to infer demography
	The options file
	The inference function

	Single-population inference example
	Plotting the results
	Computing confidence intervals
	Two-population inference and uncertainty example
	References

	Two-locus frequency spectrum
	API

	Triallele frequency spectrum
	API

	Demography and genetic diversity
	Measures of genetic diversity
	Single-population demography
	Multiple populations

	DFE inference
	Data
	Mutation rates

	Controlling for demography
	Inferring the DFE
	Caching SFS
	Optimization of the DFE

	Sensitivity to the demographic model
	References

	Linkage disequilibrium and recombination
	Sections

	Selection at two loci
	The two-locus allele frequency spectrum
	Citing this work

	Two-locus haplotype distribution under neutrality
	A quick comment on computational efficiency
	Two neutral loci

	How does selection interact across multiple loci?
	Selection models at two loci
	Additive selection, no epistasis
	Additive selection with epistasis
	Simple dominance, no epistasis
	Both dominance and epistasis
	Gene-based dominance

	How do different selection models affect expected LD statistics?
	Additive selection with and without epistasis
	Dominance
	Gene-based dominance
	Non-steady-state demography

	References

	API for site frequency spectra
	The Spectrum object
	Miscellaneous functions
	Demographic functions
	Inference functions
	Uncertainty functions
	Plotting features
	Single-population plotting
	Multi-population plotting

	API for linkage disequilibrium
	LD statistics class and function
	Demographic functions
	Utility functions
	Parsing functions
	Inference and computing confidence intervals
	Inference methods
	Confidence intervals

	Plotting

	Bibliography
	Python Module Index
	Index

